
- •Расчетное задание № 2: “множества и действия с ними” Вариант 1.
- •Вариант 2.
- •Вариант 3.
- •Вариант 4.
- •Вариант 5.
- •Вариант 6.
- •Вариант 7.
- •Вариант 8.
- •Вариант 9.
- •Вариант 10.
- •Вариант 11.
- •Вариант 12.
- •Вариант 13.
- •Вариант 14.
- •Вариант 15.
- •Вариант 16.
- •Вариант 17.
- •Вариант 18.
- •Вариант 19.
- •Вариант 20.
- •Вариант 21.
Вариант 13.
Задача 1. Какие выводы можно сделать относительно множеств А и В (соответствующую ситуацию, для наглядности, желательно изобразить с помощью кругов Эйлера), если для них верно приведенное равенство
Задача 2. Применив графический метод кругов Эйлера, докажите закон 6.1.
Задача 3. Применяя законы алгебры множеств, упростите выражение
Задача
4. Представить
в тригонометрической и показательной
формах:
.
Задача
5. Определить
модули и аргументы комплексного числа:
.
Вариант 14.
Задача 1. Какие выводы можно сделать относительно множеств А и В (соответствующую ситуацию, для наглядности, желательно изобразить с помощью кругов Эйлера), если для них верно приведенное равенство
Задача 2. Применив графический метод кругов Эйлера, докажите закон 7.1.
Задача 3. Применяя законы алгебры множеств, упростите выражение
Задача
4. Представить
в тригонометрической и показательной
формах:
.
Задача
5. Определить
модули и аргументы комплексного числа:
.
Вариант 15.
Задача 1. Какие выводы можно сделать относительно множеств А и В (соответствующую ситуацию, для наглядности, желательно изобразить с помощью кругов Эйлера), если для них верно приведенное равенство
Задача 2. Применив графический метод кругов Эйлера, докажите закон 8.Задача 3. Применяя законы алгебры множеств, упростите выражение
Задача
4. Представить
в тригонометрической и показательной
формах:
Задача
5. Определить
модули и аргументы комплексного числа:
.
Вариант 16.
Задача 1. Какие выводы можно сделать относительно множеств А и В (соответствующую ситуацию, для наглядности, желательно изобразить с помощью кругов Эйлера), если для них верно приведенное равенство
Задача 2. Применив графический метод кругов Эйлера, докажите закон 9.1.
Задача 3. Применяя законы алгебры множеств, упростите выражение
Задача
4. Представить
в тригонометрической и показательной
формах
.
Задача
5. Определить
модули и аргументы комплексного числа:
.
Вариант 17.
Задача 1. Какие выводы можно сделать относительно множеств А и В (соответствующую ситуацию, для наглядности, желательно изобразить с помощью кругов Эйлера), если для них верно приведенное равенство
Задача 2. Применив графический метод кругов Эйлера, докажите закон 9.2.
Задача 3. Применяя законы алгебры множеств, упростите выражение
Задача
4. Представить
в тригонометрической и показательной
формах:
.
Задача
5. Определить
модули и аргументы комплексного числа:
.
Вариант 18.
Задача 1. Какие выводы можно сделать относительно множеств А и В (соответствующую ситуацию, для наглядности, желательно изобразить с помощью кругов Эйлера), если для них верно приведенное равенство
Задача 2. Применив графический метод кругов Эйлера, докажите закон 10.1.
Задача 3. Применяя законы алгебры множеств, упростите выражение
Задача
4. Представить
в тригонометрической и показательной
формах:
.
Задача
5. Определить
модули и аргументы комплексного числа: