
- •2. Кинематика cодержание теории
- •Основные формулы для решения задач
- •1. Положение материальной точки в пространстве задается радиус-вектором
- •2. Средние скорость и ускорение
- •3. Мгновенные скорость и ускорение
- •4. Кинематические уравнения движения
- •5. Средние угловая скорость и ускорение
- •6. Мгновенные угловая скорость и ускорение
- •7. Кинематическое уравнение вращательного движения материальной точки
- •8. Ускорение в плоском криволинейном движении
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Решение задач группы а
- •2 Способ
- •Задачи группы б
2. Кинематика cодержание теории
1. Кинематическое уравнение движения.
2. Скорость и ускорение – дифференциальные характеристики движения.
3. Средние скорость и ускорение.
4. Угловая скорость, угловое ускорение. Связь между угловыми и линейными величинами.
5. Кинематическое уравнение вращательного движения материальной точки.
6. Ускорение в плоском криволинейном движении. Нормальная и тангенциальная компоненты ускорения.
Основные формулы для решения задач
1. Положение материальной точки в пространстве задается радиус-вектором
,
где
,
,
– единичные векторы направлений (орты);
x,
y,
z
– координаты точки.
2. Средние скорость и ускорение
Средний вектор скорости
где
– перемещение материальной точки за
интервал времени t;
,
,
– средние значения проекций скорости
на координатные оси; x=x(t)–х0;
y=y(t)–y0;
z=z(t)–z0
– проекции перемещения материальной
точки за интервал времени t;
x0,
y0,
z0
– начальное положение точки в пространстве.
Среднее значение скорости:
,
где s – пройденный путь за интервал времени t= t–t0.
Средний вектор ускорения
где
–
приращение вектора скорости материальной
точки за интервал времени t.
,
,
– средние значения проекций ускорения
на координатные оси.
Среднее
ускорение
,
где
.
3. Мгновенные скорость и ускорение
Мгновенная скорость
где
,
,
– единичные векторы (орты осей декартовой
системы координат);
;
;
– проекции скорости на координатные
оси.
Модуль скорости
.
Мгновенное ускорение
Модуль ускорения
.
4. Кинематические уравнения движения
Кинематическое уравнение движения материальной точки в векторной форме
,
где
– радиус-вектор материальной точки в
начальный момент времени t0;
– радиус-вектор в произвольный момент
времени t;
– закон изменения скорости точки со
временем.
Векторное уравнение движения эквивалентно трем скалярным:
,
,
.
Кинематическое уравнение равномерного прямолинейного движения материальной точки вдоль оси x
.
Кинематическое уравнение равнопеременного прямолинейного движения (a=const) вдоль оси x
.
Скорость точки при равнопеременном движении вдоль оси x
.
Связь скорости и ускорения
.
5. Средние угловая скорость и ускорение
Средний вектор угловой скорости
,
где
–
приращение угла поворота за интервал
времени t.
Средний вектор углового ускорения
,
где
–
приращение угловой скорости за интервал
времени t.
Средняя угловая скорость
,
где
.
Среднее угловое ускорение
,
где
.
6. Мгновенные угловая скорость и ускорение
Мгновенная угловая скорость
,
,
где z – проекция угловой скорости на ось вращения.
Угловое ускорение
,
,
где z – проекция углового ускорения на ось вращения.
Угловая скорость и угловое ускорение являются аксиальными векторами, их направления совпадают с неподвижной в пространстве осью вращения.
Связь между линейными и угловыми величинами:
S=R;
=R;
a=zR;
an=
=2R,
где R – радиус окружности, по которой движется точка; S – длина дуги окружности; – угол поворота; – линейная скорость; z – проекция углового ускорения на ось вращения; – угловая скорость; a – тангенциальное ускорение; an – нормальное ускорение.
При постоянной угловой скорости =2/T, =2, где Т – период (время одного полного оборота); – частота вращения (число оборотов, совершаемых движущейся точкой в единицу времени).