Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бэха_шпоры.doc
Скачиваний:
8
Добавлен:
14.11.2019
Размер:
1.14 Mб
Скачать

69) Фосфатиды-неглицериды.

Фосфосфинголипиды — церамиды, эстерифицированные фосфорной кислотой с азотсодержащим основанием. Они напоминают фос- фоглицериды и являются амфипатическими. Типичный представитель веществ этого класса — сфингомиелин-находится в клеточной мембране животных.Сфингомиелин представляет собой единственный фосфолипид человека, основа которого не включает глицериновый остаток. Сфингомиелин состоит из сфингозина, соединённого сложноэфирной связью с полярной группой. Полярная группа может быть фосфохолин или фосфоэтаноламин. Ко второму углероду сфингозина за счёт амидной связи присоединена жирная кислота.

Фосфоинозитиды-Фосфатиди́линозито́л— минорный фосфолипид внутреннего слоя мембран эукариотических клеток, важный компонент внутриклеточных сигнальных путей. Фосфатидилинозитол является субстратом для множества разнообразных сигнальных молекул-киназ, которые могут присоединить к инозитолу фосфатную группу.

70 Переваривание липидов пищи происходит в кишечнике. Основные продукты гидролиза(жирные кислоты и 2-моноацилглицеролы) после всасывания подвергаются ресинтезу и последующей упаковке в хиломикроны в клетках слизистой оболочки кишечника. Переваривание жиров происходит в тонком кишечнике, но уже в желудке небольшая часть жиров гидролизуется под действием ”липазы языка”. Этот фермент синтезируется железами на дорсальной пов-ти языка и устойчив при кислых значениях pH желудочного сока. Поэтому он действует в течение 1-2 часов на жиры пищи в желудке. Действию панкреатической липазы,гидролизирующей жиры, предшествует эмульгирование жиров. Эмульгирование(смешивание жира с водой) происходит в тонком кишечнике под действием солей желчных кислот. Желчные кислоты синтезируются в печени из холистерола и секретируются в желчный пузырь. Содержимое желчного пузыря-желчь. Это вязкая жёлто-зелёная жидкость, содержащая главным образом желчные кислоты; в небольшом кол-ве имеются холестерол и фосфолипиды. Желчные кислоты действуют как детергенты, располагаясь на пов-ти капель жира и снижая пов-ое натяжение. В результате крупные капли жира распадаются на множество мелких. При поступление пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретаровать в кровь пептидный гормон-холецистокинин. Этот гормон действует на желчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секркцию пищ-ых ферментов. Секретин-гормон пептидной природы, стимулирующий секрецию бикарбоната в сок поджелуд. железы. Наиболее активно соли желчных кислот всасываются в подвздошной кишке. Желчные кислоты попадают через воротную вену в печень, из печени вновь секретируется в желчный пузырь и далее опять участвует в эмульгировании жиров. Этот путь желчных кислот называют «энтерогепатическая циркуляция». Каждая молекула желчных кислот за сутки проходит 5-8 циклов, и около 5% желчных кислот выделяется с фекалиями. Всасывание жирных кислот со средней длиной цепи, происходит без участия смешанных мицелл. Эти жирные кислоты из клеток слизистой оболочки тонкого кишечника попадают в кровь, связываются с белком альбумином и транспортируются в печень..Нарушение переваривания жиров может быть следствием нескольких причин. 1-на из них-нарушение секреции желчи из желчного пузыря при механическом препятствии оттоку желчи. Уменьшение секреции желчи приводит к нарушению эмульгирования жиров и к снижению способности панкреатической липазы гидролизовать жиры. При нарушении переваривания жиров плохо перевариваются и вещ-ва нелипидной природы, т.к. жир обволакивает частицы пищи и препятствует действию на них ферментов.

71 Липопротеи́ны (липопротеиды) — класс сложных белков, простетическая группа которых представлена каким-либо липидом. Так, в составе липопротеинов могут быть свободные жирные кислоты, нейтральные жиры, фосфолипиды, холестериды

В ранних программных исследованиях липидов электрофорез липопротеинов проводили на бумаге. Липопротеины обычно классифицируют по плотности, однако известна другая классификация (старая), основанная на нахождении липопротеинов на бумаге после электрофореза.

Гамма

Бета

Альфа

0-40% 35-50% 15-30%

Электрофорез в ПААГ. Разделение ЛП сыворотки крови проводят в стеклянных трубках. В специальном штативе строго вертикально установленные трубки заполняют гелем с помощью шприца с длинной иглой. Исследуемый образец сыворотки готовят на том же буфере, он имеет то же значение pH, что и раствор концентрирующего геля. Чтобы предотвратить смешивание раствора сыворотки крови с верхнем "электродным" буфером, плотность исследуемой сыворотки повышают, добавляя в нее сахарозу. Пробы предварительно окрашивают насыщенным раствором судана черного В в этиловом спирте. Пробы оставляют на 1 час при комнатной температуре в темноте, после чего 0,03 - 0,05 мл окрашенной пробы используют для разделения ЛП. Образуются следующие фракции: хиломикроны (гамма) -> ЛПОНП -> ЛПНП (бета) -> ЛПВП (альфа)->ЛПОВП (альбумины+1% своб.жир.кислот) Ультрацентрифугирование (используются их различия по плотности). Центрифугирование применяется для разделения неоднородных жидких сред. Центрифугирование позволяет разделить смесь, состоящую из двух или более компонентов с разной удельной плотностью, если по крайней мере один из этих компонентов — жидкость. Разделение веществ с помощью центрифугирования основано на разном поведении частиц в центробежном поле. В центробежном поле частицы, имеющие разную плотность, форму или размеры, осаждаются с разной скоростью. Образуются следующие фракции: хиломикроны (гамма) -> ЛПОНП -> ЛПНП (бета) -> ЛПВП (альфа)->ЛПОВП (альбумины+1% своб.жир.кислот)

72 Хиломикроны синтезируются в кишечнике, переносят главным образом ТАГ, транспортируют переваренные жиры в ткани, где они гидролизуются липопротеинлипазой. После гидролиза жирные кислоты идут в ткани и хиломикроны теряют молекулярную массу, превращаясь в остатки или ремнанты хиломикронов.

Липопротеины очень низкой плотности(ЛПОНП) синтезируются в печени, содержат много ТАГ, доставляют ТАГ к тканям, где они гидролизуются липопротеинлипазой. ЛПОНП становятся меньше, т.е. превращаются в ЛПСреднийП, а затем ЛПНизкойП.

ЛПНП происходит из ЛПОНП, содержат много холестерина, разносят холестерин другим тканям, играют интегральную роль в интеграции синтеза холестерина.

ЛПВысокойП-точное происхождение не известно, предположительно-печень. Содержат много фосфолипидов, забирают холестерин из ткани. ЛХАТ(фермент, переносящий жирную кислоту из второго положения фосфолипида на холестерин, где у него есть гидроксильная группа) синтезирует эфиры холестерина, которые погружаются в гидрофобное ядро и переносятся на ЛПОНП.

73 Функции мембран: отделение клетки от окр. среды и формирование внутриклеточных отсеков; участие в обеспечение межклеточных взаимодействий, передача внутрь клетки сигналов; контроль и регулирование транспорта огромного разнообразия веществ через мембрану; преобразование энергии пищевых органических веществ в энергию хим-х связей молекул АТФ. Основу мембраны составляет двойной пептидный слой, образованный двумя рядами липидов, гидрофобные радикалы спрятаны внутрь, а гидрофильные группы – наружу и контактируют с водной средой. Белковые молекулы растворены в белковом слое. Любая молекула может пройти через липидный слой, однако скорость пассивной диффузии веществ, т.е. переходы вещества из области с большей концентрации в область с меньшей, может отличаться. Л²耀че всего проходят простой диффузией малые неполярные молекулы (О2, стероиды, жирные кислоты), облегченная диффузия возможна благодаря избирательному взаимодействию веществ (глицерол, глюкоза) с определенными лигандами. Существует также активный транспорт, осуществляемый всегда с помощью белков-переносчиков и происходящий с затратой энергии.

74 Дислипопротеинемия – нарушение обмена липопротеинов крови и липидов транспортируемых ими. Проявляются чаще всего повышением концентрации либо одного типа липопротеинов, либо сочетанным увеличения содержания нескольких типов липопротеидов. Имеется несколько типов этого заболевания: тип 1-ый (наследственная недостаточность липопротеинлипазы) – нет риска атеросклероза, гипертриглицеролемия; тип 2-ой (семейная гиперхолестеролемия) – ранний атеросклероз, ксантоматоз; тип 3-ий (семейная комбинированная гиперлипидемия) – ранний атеросклероз. Типы 4-ый и 5-ый (семейная гипертриглицеролемия) – атеросклероз, снижение толерантности к глюкозе.

75 Синтез триацилглицеридов происходит в абсорбтивный период в печени и жировой ткани. Непосредственными субстратами в их синтезе является ацил-КоА и глицерол-3-фосфат. Метаболический путь синтеза их в печени и жировой ткани одинаков. Используются в основном жирные кислоты. освободившиеся при гидролизе хиломикронов и липопротеинов очень низкой плотности (ЛПОНП). Они поступают в адипоциты, превращаясь в производные КоА и взаимодействуют с глицерол-3-фосфатом, образуя фосфатидную кислоту, которая превращается в диацилглицерол, который ацилируется с образованием триацилглицерола. Регуляция синтеза жировых кислот: в абсорбтивный период при увеличение соотношения инсулин/глюкагон в печени активируется синтез жиров. В жировой ткани индуцируется синтез липопротеинлипазы в адипоцитах и осуществляется ее экспонирование на поверхность эндотелия. Поступление глюкозы в адипоциты и гликолиз также активируется. В результате увеличиваются активность и синтез ферментов, участвующих в превращении части глюкозы, поступающей с пищей, в жиры. Адипоциты – шаровое депо организма, рапологается в основном под кожей, образуя подкожный жировой слой, и в брюшной полости, образуя большой и малый сальник. Мобилизация жиров, т.е. гидролиз до глицерола и жирных кислот, происходит в постабсорбтивный период, при голодании и активной физической нагрузке. Ожирение – избыточное накопление жира в адипоцитах, важнейший фактор риска развития инфаркта миокарда, инсульта, сахарного диабета, желчнокаменной болезни, масса тела повышается на 20% от идеальной для данного индивидуума. Различают первичное ожирение (нарушение оси гипоталамус-адипоциты) из-за относительной или абсолютной пептиновой недостаточности, плохой физической активности и психологических факторов и вторичное ожирение (синдром, возникающий при наличии в организме каких-либо расстройств, усиливающих запасание и уменьшающих расход триацилглицеринов на фоне изначально нормальных сигнальных взаимодействий адипоцитов и гипоталамуса). Фосфатидные кислоты и триацилглицериды синтезируются на основе глицерофосфата. Это соединение образуется из глицерина в результате переаминирования с АТФ (катализатор - глицеролкиназа). Глицеролфосфат реагирует с двумя молекулами ацил-КоА, образуя фосфатидные кислоты.

76 Какой процесс будет преобладать в организме – синтез жиров (липогенез) или их распад (липолиз), зависит от поступления пищи и физической активности. Липолиз происходит в постабсорбтивном состоянии под действием глюкагонаю Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз, т.к. действует через бета-адренергические рецепторы адипоцитов, активирующие аденилатциклазную систему. Липолиз представлен гидролизом жиров. Триацилглицеприны составляют основную массу липидов. Их гидролиз протекает под действием панкреатической липазы, которая активируется в кишечнике специальным кофактором-колипазой и желчными кислотами. Продуктами гидролиза являются чаще всего 2 моноацилглицерин и свободные жирные кислоты.

В межлопаточной области, вдоль крупных сосудов грудной и брюшной полостей, в затылочной области шеи находятся жировая ткань бурого вида. Масса бур. жир. тк. достигает у взрослого 0,1% от массы тела, у детей больше. В ней образуется в ходе метаболизма жира значительно большее кол-во тепла, чем в белой жировой ткани. Бур.жир.тк. играет роль не только в теплопродукции, но и в поддержании на относительно постоянном уровне массы тела. Обмен глицерина тесно связан с гликолизом, в который вовлекаются метаболиты глицерина. Сначало глицерин при участии глицеролфосфокиназы превращается в альфа-глицеролфосфат. Последний под действием НАД-зависимой альфа-глицеролфосфатдегидрогеназы превращается в дигидроксиацетонфосфат, который являясь обычным метаболитом гликолиза, включается в гликолиз и превращается его ферментами до лактата в анаэробных условиях или до СО2 и Н2О в аэробных. Превращение одной молекули глицерина дает одну молекулу АТФ в анаэробных условиях и 19 молекул АТФ в аэробных. Глицерин – очень хороший энергетический субстрат и используется в этих целях практически всеми органами и тканями.

77 Жирные кислоты(ЖК), образовавшиеся в клетке путем гидролиза ТАГ или поступившие в нее из крови должны быть активированы. Активирование их происходит в цитоплазме с участием ацетил-КоА-синтетазы. Далее происходит транспорт ацила через мембрану внутрь митохондрий с участием карнетина. Процесс обратимого переноса ацила между КоА и карнетином на внешней и внутренней стороне мембраны осуществляется ацил-КоА-карнетин-трансферазой. В матриксе происходит окисление ЖК в цикле Кнопа-Линена. В состав этого цикла входят 4 фермента, которые последовательно действуют на ацил КоА. К ним относятся: ацил-КоА-дегидрогеназа (ФАД-зависимый фермент), еноил-КоА-гидратаза, 3-гидроксиацил-КоА-дегидрогеназа(НАД зависимый фермент) и ацетил-КоА-ацилтрансфераза. За один виток цикла от ЖК отрывается остаток уксусной кислоты в виде ацетил-КоА и образуется 1 молекула ФАДН2 и одна молекула НАДН2. Затем циклы повторяются до тех пор пока ЖК не укоротится до 4-х углеродного фрагмента-бутирил-КоА. На последнем витке бутирил-КоА разрывается пополам, с образованием 2-х молекул ацетил-КоА. Далее ацетил-КоА вступает в цикл Кребса, а ФАДН2 и НАДН2- прямо в дыхательную цепь. Энергетическая ценность ЖК с четным числом углеродных атомов рассчитывается формулой: 5(n-1)+12n-1=17n-6 молекул АТФ. ЖК с нечетным числом углеродных атомов при распаде, кроме того, образуют одну молекулу пропионил-КоА, который превращается в сукцинил КоА, а затем в фумарат, сгорающий в цикле Кребса. Особенности окисления ненасыщенных ЖК определяются положением и числом двойных связей в их молекулах. До места двойной связи ненасыщенные ЖК окисляются также как насыщенные. Если двойная связь имеет трансконфигурацию, то далее окисление идет обычным путем(обычные продукты окисления + пропионил-КоА сукцинил-КоА) в противном случае в реакции участвует дополнительный фермент, способствующий перемещению двойной связи в транс-положение.

78 В клетках организма жирные кислоты(ЖК) заново синтезируются из простых фрагментов с участием пальмитат-синтетазы.

(Стадии синтеза)

Регуляция синтеза жирных кислот. Регуляторный фермент ацетил-КоА-карбоксилаза. 1ассоциация/диссоциация комплексов субедениц фермента. Цитрат активирует этот фермент, а длинноцепочечные ЖК, в частности пальмитоил-КоА – диссоциирует. 2фосфориллирование/дефосфорилирование ацетил-КоА-карбоксилазы. В постабсорбтивном состоянии или при физической работе глюкогон или адреналин через адренилат-циклазную систему активируют протеинкеназу-А и стимулируют фосфориллирование субединиц фермента. Фосфориллированный фермент не активен и синтез ЖК останавливается. 3индукция синтеза фермента. Длительное потребление богатой углеводами и бедной жирами пищи приводит к увеличению секреции инсулина, который стимулирует индукцию синтеза ацетил-КоА-карбоксилазы, пальмитат-синтазы и т.д. Голодание, или богатая жирами пища приводит к снижению синтеза ферментов.

79 Пути использования ацетил-КоА: 1.Идет в ЦТК, выделяется энергия при достаточном кол-ве ЩУК. 2.Биосинтез ЖК. 3.Биосинтез холестерина. 4.Биосинтез кетоновых тел. Биосинтез кетоновых тел. кетоновыми телами называют вещества: ацетоацетат, бета-оксимаслянная кислота и ацетон. Это недоокисленные продукты распада жирных кислот и кетоновых аминокислот (лейцин, лизин, тирозин, триптофан). Образуется кетоновые тела в митохондриях, в печени. Возможны 2 пути кетогенеза: 1.Гидроксиметилглуторатный цикл (очень активный). На первом этапе конденсируется две молекулы ацетил-КоА образуется ацетоацетил-КоА. Далее присоединяется еще одна молекула ацетил-КоА. Ацетоацетат – конечный продукт гидроксиметилглутаратного цикла и первое кетоновое тело. Остальные образуются из него. 2.Деаценазный путь кетогенеза (мало активен). Из печени кетоновые тела поступают в кровь. Кетоацидоз. В норме концентрация кетоновых тел в крови составляет 1 или 3 мг/дицелитр, но при голодании значительно увеличивается. Накопление кетоновых тел в организме приводит к кетоацидозу: уменьшению щелочного резерва, а в тяжелых случаях – к сдвигу рН, т.к. кетоновые тила явл. водорастворимыми органическими кислотами способными к диссоциации. Ацедоз достигает опасных величин при сахарном диабете, т.к. концентрация кетоновых тел при этом может доходить до 400-500 мг/дц. Тяжелая форма ацедоза – одна из основных причин смерти при сахарном диабете.

80 Синтез триацилглицерина происходит при депонирование липидов в жировой ткани или в др. тканях организма. Этот процесс локализуется в геалоплазме клеток, используется альфа-глицеролфосфат и ацил-КоА. Первой стадией синтеза служит образование фосфатидной кислоты с участием глицерофосфат-ацилтрансферазы. Далее фосфатидная кислота подвергается действию фосфатидат-фосфатазы с образованием диацилглицерина. На диацилглицерин с помощью диацилглицерол-ацилтрансферазы переносится третий ацильный остаток. Синтезируемый триацилглицерин накапливается в виде жировых включений в цитоплазме клеток. Биосинтез фосфолипидов. Синтез фосфолипидов связан с обновлением мембран. Этот процесс протекает в гиалоплазме ткани. Первые стадии синтеза фосфолипидов и триацилглицеринов совпадают. Эти пути расходятся на уровне фосфатидной кислоты и диацилглицерина. Существует 2 пути синтеза фосфолипидов. 1-ый путь связан с вовлечением фосфатидной кислоты в синтез фосфоглицеридов. Взаимодействие ее с цитидинтрифосфат (ЦТФ) приводит к образованию ЦДФ-диацилглицерина, который как кофермент способен участвовать в переносе диацилглицерина на серин. При этом образуется фосфотидилсерин. Серинфосфотиды декарбоксилируются и образуются этаноламинфосфотиды. Последние метилируются с участием S-аденозилметианина, а переносчиками метильных групп служат тетрогидрофолиевая кислота и метил кобалонин. 2-ой путь синтеза связан с активированием спирта с образованием ЦДФ-холина. последний участвует в переносе холина на диацилглицерин с образованием фосфотидилхолина. Синтезированные фосфолипиды переносятся с помощью липидпереносящих белков цитоплазмы к мембранам и встраиваются на место старых молекул. Вследствие конкуренции между путями синтеза фосфолипидов и триацилглицеринов за общие субстраты все вещества, способствующие синтезу фосфолипидов, припятствуют огтложению триацилглицеринов в тканях. Эти вещества называются липотропными факторами. К ним относятся структурные компоненты фосфолипидов-холин, инозид, серин; вещество, облегчающее декарбоксилирование серинфосфатидов-перидоксальфосфат; донор метильных групп – метионин.

81 Реакции перекисного окисления липидов(ПОЛ) являются свободно радикальными и постоянно происходят в организме. Свободнорадикальное окисление нарушает структуру многих молекул- ПОЛ-цепные реакции,обеспечивающие расширенное воспроизводство свободных радикалов, частиц, имеющих неспаренный электрон, которые инициируют дальнейшее распространение перекисного окисления. Стадии перекисного окисления 1)-инициация: образование свободного радикала. Инициирует реакцию чаще всего гидроксильный радикал, отнимающий водород от СН2-групп полиеновой кислоты, что приводит к образованию липидного радикала. 2)-развтие цепи: происходит при присоединение кислорода, в результате чего образуется липопероксирадикал. ПОЛ представляет собой свободно радикальные цепные реакции, т.е. каждый образовавшийся радикал инициирует образование других. 3)-разрушение стр-ры липидов: конечные продукты перекисного окисления полиеновых кислот- малоновый диальдегид и гидропероксид кислоты. 4)-обрыв цепи-взаимодействие радикалов между собой: развитие цепи может останавливаться при взаимодействии с различными антиоксидантами.

82 Холестерин может быть синтезирован в каждой эуокариотицеской клетке, но преимущественно в печени. Протекает из ацетил-КоА,с участием ферментов ЭПР и гиалоплазмы.Состоит из 3 этапов:1)образование мемалоновой к-ты из ацетил КоА 2)синтез из мимолоновой к-ты активного изопрена с конденсацией его в скволен 3) превращение скволена в холестерин. ЛПВП собирают излишек холестерина из ткани, этерифицирует его и передает его ЛПОНП и хиломикронам (ХМ). Холестерин – переносчик непредельных жирных кислот. ЛПНП доставляет холестерин тканям и к нему имеют рецепторы все клетки организма. Синтез холестерина регулируется ферментом ГМГ-редуктазы. Весь холестерин, кот. выводится из организма поступает в печень и экскретируется с желчью либо в виде холестерина, либо в виде солей желчных к-т, но большая часть желчи. реабсорбируется из кишечно-печеночной регуляции. Клеточные рецепторы ЛПНП взаимодействуют с лигандом апо-В100 на ЛПНП, после чего он захватывается клетку путем эндоцитоза и в лизосомах распадается, эфиры холестерина при этом гидролизуются. Свободный холестерин ингибирует ГМГ-КоА-редуктазу, синтез холестерина деново и активирует ЛХАТ (способствует образованию эфиров холестерина). При повышении концентрации холестерина уменьшается кол-во рецепторов ЛПНП. Концентрация холестерина в крови сильно зависит от наследственных и негативных факторов. Повышение уровня свободных и жирных кислот в плазме крови приводит к усилению секреции печени ЛПОНП и соответственно поступлению дополнительного кол-ва ТАГ и холестерина в кровоток. Факторы, вызывающие повышение или колебания уровня свободных жирных кислот: эмоциональный стресс, никотин, злоупотребление кофе, прием пищи с большими перерывами и в больших кол-вах.

83 Концентрация холестерина в крови сильно зависит от наследственных факторов, кроме того ИШБ способствует так же высокое кровяное давление, курение, ожирение, отсутствие физ нагрузки и употребление мягкой воды. Повышение уровня свободных жирных к-т в плазме приводит к усилению секреции печенью ЛПОНП и соответствует поступлению дополнительного кол-ва ТАГ и холестерина в кровоток. . Факторы, вызывающие повышение или колебания уровня свободных жирных кислот: эмоциональный стресс, никотин, злоупотребление кофе, прием пищи с большими перерывами и в больших кол-вах. ЛПВП содержит в основном фосфолипиды и принимает холестерин из тканей и др ЛП. Холестерин этерефицируется ЛХАТ, кот погружаются в центр ЛП. Холестериновый эфир переносится с помощью переносящего белка на ЛПОНП, хиломикроны. ЛПОНП метаболизируется в ЛПНП.

84 ЛПВП собирают излишек холестерина из ткани, этерифицирует его и передает его ЛПОНП и хиломикронам (ХМ). Холестерин – переносчик непредельных жирных кислот. ЛПНП доставляет холестерин тканям и к нему имеют рецепторы все клетки организма. Синтез холестерина регулируется ферментом ГМГ-редуктазы. Весь холестерин, кот. выводится из организма поступает в печень и экскретируется с желчью либо в виде холестерина, либо в виде солей желчных к-т, но большая часть желчи. реабсорбируется из кишечно-печеночной регуляции. Желч. к-ты синтезир в печени из холестерола. В орг-ме за сутки синтезируется200-600 мг желчн. к-т. Первая реакция синтеза – образ. 7-а-гидроксилаза, ингибируется конечным продуктом желчн к-тами.и Послед р-ии синтеза приводят к формированию 2 видов желчн. к-т: холевой и хенодезоксихолевой. Коньюгирование – присоединение ионизированных молекул глицина или таурина к карбоксильной группе желчн. к-т. Коньюгеция происходит в Кл печени и начинается с образования активн формыц желчн. к-т – производных КоА. затем рписоединяется таурин или глицин, в рез-те образ. 4 варианта коньюгатов: таурохолевая или гликохенодезоксихолевая, гликохолевая к-ты. Желчнокаменная болезнь – паталогический процесс при котором в желчном пузыре образуются камни, основу которых составляет холестерол. У большенства больных желчнокаменной болезнью активность ГМГ-КоА-редуктазы повышена, следовательно увеличен синтез холестерола, а активность 7-альфа-гидроксилазы снижены. В результате синтез холестерола увеличен, а синтез желчных к-т из него замедлен. если эти пропорции нарушены, то холестерол начинает осаждаться в желчном пузыре. образуя в начале вязкий осадок, кот. постеп-но становится более твердым. Холестериновые камини обычно белого цвета, а смешанные камни – коричневого цвета разных оттенков. Лечение желчнокаменной болезни. В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолиевую кислоту. Попадая в желчный пузырь, эта желчная к-та постепенно растворяет осадок холестерола, однако это медленный процесс, требующий несколько месяцев. структурная основа холестерола не может быть расщеплена до СО2 и воды, поэтому осн. кол-во выводится только в виде желч. к-т. Некоторое кол-во желч. к-т выделяется в неизменном виде, я часть подвергается действию ферментов бактерий в кишечнике. Часть молекул холестерола в кишечнике под действием ферментов бактерий восстанавливается по двойной связи, образуя два типа молекул – холестанол, копростанол, выводимые с фекалиями. В сутки из организма выводится от 1 до 1,3 г холостерола. основная часть удаляется с фекалиями

85 Избыточное потребление калорийной пищи — углеводов, триацилглицеринов, препятствует расходу эндогенных запасов триацилглицеринов в жировой ткани. Прием большого количества только углеводистой пищи оказывает существенное влияние на образование триацилглицеринов и холестерина. Синтез эндогенного холестерина также регулируется поступающим с пищей экзогенным холестерином: чем больше потребляется с пищей холесте- гина, тем меньше его образуется в печени. Экзогенный холестерин тормозит активность гидроксиметилглутарил-КоА-редуктазы и циклизацию сквалена в ланостерин. Существенную роль в превращении липидов в организме играет соотно­шение в пище различных липидов. Потребление ненасыщенных жирных кислот, имеющихся в растительных маслах, оказывает благоприятное воздействие на синтез эндогенных фосфолипидов, субстратами которых они являются, и на образование других веществ, для которых требуются полиеновые жирные кислоты, например простогландинов. Являясь разобщителями окислительного фосфорилирования, ненасыщеные жирные кислоты ускоряют процессы окисления в митохондриях тканей и тем самым регулируют избыточ­ное отложение триацилглицеринов. Существенное влияние на биосинтез фосфолипидов и триацилглицеринов оказывают липотропные факторы. Они облегчают био­синтез фосфолипидов. Отсутствие их в пище способствует образованию три­ацилглицеринов. Голодание вызывает мобилизацию ТАГ из жировой ткани и угнетает эндогенный биосинтез холестерина из-за малой активности гидроксиметилглутарил-КоА-редуктазы. Нервно-гормональная регуляция липидного обмена сказывается в основ­ном на мобилизации и синтезе ТАГ в жировой ткани. Липолиз в тканях зависит от активности ТАГ-липазы. Все регуляторы, способствующие переходу неактивной (нефосфорилированной) липазы в ак­тивную (фосфорилированную), стимулируют липолиз и выход жирных кислот в кровь. Стимуляторами этого процесса являются адреналин и норадреналин (выделяющиеся в окончаниях симпатических нервов), гормоны (глюкагон, адреналин, тироксин, трииодтиронин, соматотропин, бетта-липотропин, кортикотропин и др.), межтканевые регуляторы, или гормоноподобные вещества (гистамин, серотонин и т. д.). Инсулин, наоборот, угнетает аденилатциклазу, чем препятствует образованию активной липазы в жировой ткани, т. е. тормо­зит липолиз. Жировая инфильтрация печени. При этой патологии содержание триглицеридов в печени в 10 раз выше нормы. Скопление жира в цитоплазме клеток вызывает нарушение функции печени. Причины могут быть разные одна из них — недостаток липотропных факторов и связанный с этим избыточный синтез триглицеридов.

86 Все гормоны классифицируют по хим. строению, биологическим функциям и механическому действию. По хим. строению гормоны делятся на пептидные (гормон роста, глюкагон), стероидные (кортизол, тестостерон), производные аминокислот (адреналин, норадреналин). По био. функциям: обмен углеводов, липидов и аминокислот (инсулин, глюкагон, адреналин, соматотропин), водно-солевой обмен (альдостерон, антидиуритический), обмен Са и фосфатов (паратгормон, кальцитонин, кальцитреол), репродуктивная функция (гонадотропные гормоны), синтез и секреция гормонов эндокринных желез (либерины, статины, тропные гормоны гипофиза), изменение метаболизма в клетках, синтезирующих гормон (цитокины, эйкозаноиды, гистамин). Гормоны функционируют как хим. посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Гипоталамус синтезирует пептидные гормоны: Тиреолиберин (стимулирует секрецию тириотропина и пролактина), кортиколиберин (стим. секрецию кортикотропина), гонадолиберин (стим. секрецию ЛГ и ФСГ), соматолиберин (стим. секрецию соматотропина), пролактолиберин (стим. секрецию пролактина), дофамин (ингибирует секрецию пролактина). Системы регуляции обмена веществ и функции организма образуют 3 иерархических уровня: 1-ЦНС, 2-эндокринная система, 3-внутриклеточный. Второй уровень включает гипоталамус, гипофиз, периферические эндокринные железы, синтезирующие гормоны и высвобождающие их в кровь при действии соответствующего стимула.

87 В передней доли гипофиза синтезируются тропные гормоны, стимулирующие синтез и секрецию гормонов других эндокринных желез или оказывающие влияние на метаболические реакции в других органах мишенях. Синтез и секреция этих гормонов регулируется гормонами гипоталамуса, которые поступают в гипофиз через портальную систему кровеносных сосудов, а также регулируется по механизму обратной связи гормонами продукцию которых они стимулируют в органах мишенях. В передней доли синтезируются гормоны которые по химическому строению являются пептидами и гликопротеинами. Гормон роста стимулирует постнатальный рост скелета и мягких тканей, участвует в регуляции энергетического и минерального обмена. Тиреотропный гормон стимулирует синтез йодтиронинов. Пролактин стимулирует лактацию лютеинизирующей гормон, у женщин индуцирует овуляцию, у мужчин индуцирует синтез андрогенов в клетках Лейдига. Фолликулостимулирующий гормон у женщин стимулирует рост фолликулов , у мужчин стимулирует сперматогенез. Кортикотропин стимулирует рост надпочечников и синтез кортикостероидов. Бета липотропин стимулирует липолиз. Соматотропный гормон синтезируется в соматотрофных клетках, его содержание 5-16мг. на 1г. железы. Гормон роста состоит из 191 кислотного остатка и имеет 2 внутримолекулярные дисульфидные связи. Секреция гормона роста носит пульсирующий характер с интервалами 20-30мин. Регуляция синтеза и секреции осуществляется множеством факторов (основной стимулирующий- соматолиберин, тормозящий- гипоталамический соматостатин). Основное действие гормона роста направлено на регуляцию обмена белков и процессов, связанных с ростом и развитием организма, усиливается транспорт аминокислот в клетки мышц, синтез белка в костях, хрящах, мышцах, печени и других внутренних оранах.

88 Синтез тироглобулинов, вырабатываемых клетками фолликулярного эпителия щитовидной железы, контролируется по цепочке: тиролиберин(гипоталамус)-тиротропин(гипофиз)-тириоглобулин. Синтез тироглобулина тормозят тириоидные гормоны, котрые подавляют секрецию тироглобулина

В щитовидной железе синтезируются гормоны-трийодтиронин, тетрайодтиронин. При физиологической концентрации йодтиронинов их действие проявляется в ускорении белкового синтеза,стимуляции процессов роста и клеточной дифференцировки. Трийодтиронин ускоряет транскрипцию гена гормона роста. В печени йодтиронины ускоряют гликолиз,синтез холестерина и синтез жёлчных кислот. Трийодтиронин увеличивает в мышцах потребление глюкозы, стимулирует синтез белков и увеличение мышечной массы, повышает чувствительность мышечных клеток к действию адреналина. Иодтиронины также участвуют в формировании ответной реакции на охлаждение увеличением теплопродукции, повышая чувствительность симпатической нервной системы к норадреналину и стимулируя секрецию норадреналина.

89 Регуляция половых желез осуществляется путем рефлекторного изменения внутренней секреции гипофиза. Решающее значение имеют гонадотропные гормоны, образующиеся в передней доли гипофиза. Существует 3 гонадотропина: фолликулостимулирующий, лютеонизирующий гормоны и пролактин. Фолликулостимулирующий гормон ускоряет развитие в яичнике фолликулов у самок, образование сперматозоидов и развитие предстательной железы у самцов. Лютеонизирующий гормон усиливает образование половых гормонов и образование желтого тела. Пролактин стимулирует образование прогестерона в желтом теле и лактацию. В яичниках синтезируются женские половые гормоны: эстрогены и прогестероны. Эстрогены стимулируют развитие тканей, участвующих в размножении, определяет развитие многих женских вторичных половых признаков, регулируют транскрипцию гена рецептора прогестина. В лютеиновой фазе под действием эстрогенов эпителий матки превращается в секреторный, подготавливая его к имплантации оплодотворенной яйцеклеткой, оказывают анаболическое действие на кости и хрящи, поддерживают нормальную структуру кожи и кровеносных сосудов у женщин. Эстрогены оказывают влияние на обмен липидов (приводит к снижению содержания холестерола в крови). Эстрогены тормозят процесс локальной деминерализации кости. Действие прогестерона направлено на репродуктивную ф-ию организма. Прогестерон может также оказывать действие на ЦНС, в частности вызывать некоторые особенности поведения в предменструальный период. Во время беременности формируется эндокринный орган- плацента, который секретирует белковые и стероидные гормоны в организм матери. Белковые гормоны: хорионический гонадотропин, плацентарный лактоген, тиреотропин. Стероидные гормоны: прогестерон, эстрадиол, эстрон, эстриол, тестостерон.

90 Регуляция половых желез осуществляется путем рефлекторного изменения внутренней секреции гипофиза. Решающее значение имеют гонадотропные гормоны, образующиеся в передней доли гипофиза. Существует 3 гонадотропина: фолликулостимулирующий, лютеонизирующий гормоны и пролактин. Фолликулостимулирующий гормон ускоряет развитие в яичнике фолликулов у самок, образование сперматозоидов и развитие предстательной железы у самцов. Лютеонизирующий гормон усиливает образование половых гормонов и образование желтого тела. Пролактин стимулирует образование прогестерона в желтом теле и лактацию. Мужские половые гормоны вырабатываются, в основном, в мужских половых железах- в интерстициальных клетках Лейдига семенников (95%), небольшое кол-во образуется в коре надпочечников. Андрогены в органиме обладают мощным анаболическим дейстивем и стимулируют клеточное деление, повышенный уровень андрогенов в препубертатный период приводит к скачкообразному увеличению линейных размеров тела, увеличению скелетных мышц, росту костей, но остановке роста так как стимулирует сращение эпифизов длинных костей с их стволами, андрогены вызывают изменение структуры кожи и волос, снижение тембра голоса вследствие утолщения голосовых связок и увеличения объема гортани, стимулируют секрецию сальных желез. Препараты тестостерона и их синтетических аналогов применяются в клинике при гипофункции семенников, нарушении половой дифференцировки, функциональных нарушениях половой системы у мужчин. Анаболические стероиды (метиландростендиол) используется при заболеваниях, протекающих с истощением, при недостатке роста и физического развития детей, а также при сахарном диабете и для стимуляции сращивания костей при переломах.

91 По механизму действия гормоны делят на 2 группы: 1- гормоны, взаимодействующие с мембранными рецептопами(пептидные гормоны, адреналин) 2- гормоны, взимодействующие с внутриклеточными рецепторами. Передача гормональных сигналов через мембранные рецепторы. Гормоны(первичные посредники), связываясь с рецепторами образуют комплекс гормон-рецептор, который трансформирует сигнал первичного посредника в изменении концентрации молекул внутри клетки- вторичных посредников(цАМФ, цГМФ,ИФ три, ДАГ ионы Ca, NO. Образующиеся под действием аденилатциклазы цАМФ активирует протеинкеназу А, фосфорилирующую ферменты и другие белки. Генерирующая цГМФ сопряжена с гуанилатциклазой. Молекулы цГМФ могут активировать ионные каналы либо активировать цГМФ зависимую протеинкеназу G. Через активацию G белков активируют фосфолипазу С, в результате чего в клетке появляются ИФ три, ДАГ. Молекула ИФ три стимулирует высвобождение ионов Са из эндоплазматического ретикулума. Са связывается с белком кальмодулином. Ионы Са и ДАГ участвуют в активации протеинкеназы С. Сигнальная молекула NO образуется в организме из аргинина при участии фермента NО- синтазы, присутствующего в нервной ткани, эндотелии сосудов. Молекула NO может быстро быстро диффундировать через мембрану эндотелиальных клеток, где она синтезируется в соседние клетки. Действие NO кратковременно. Передача сигналов через внутриклеточные рецепторы: стероидные и тиреоидные гормоны связываются с рецепторами внутри клетки и регулируют скорость транскрипции специфических генов. Рецепторы тиреоидных гормонов всегда связаны с ДНК. Передача сигналов через рецепторы, сопряженные с ионными каналами: рецепторы, сопряженные с ионными каналами, являются интегральными мембранными белками, состоящими из нескольких субъединиц. Они действуют одновременно как ионные каналы и как рецепторы, которые способны специфически связывать с внешней стороны эффектор, изменяющий их ионную проводимость. Эффекторами такого типа могут быть гормоны и нейромидеаторы.

92.Витамин А(антиксерофтальмический)-ретинол, химическая структура которого представлена бета-ионовым кольцом и 2 остатками изопрена;потребность его 2,5-3 мг в сутки.Источники:печень,яичный желток,рыбий жир.провитамина А:морковь,томаты.

Вит.А участвует в процессах зрения,входя в состав родопсина,обуславливающего сумеречное зрение;участвует в окисл-восстан.реакциях в организме;изменяет проницаемость клеток и тканей;усиливает биосинтез гликопротеинов мембран клеток.

Вит.К(антигеморрагический)по хим.природе представляет производное нафтохинонов,сут.потребность которого 1мг.Источники:капуста,ягоды рябины,арахисовое масло,тыква,томаты,печень свиньи.Вит.К участвует в свертывании крови,являясь кофактором гамма-глутамилкарбоксилазы,которая катализирует превращение глутаминовой кислоты в гамма-карбоксиглутамат,необходимый для биосинтеза 4 факторов свертывания крови:ф-2-протромбина.ф-7-проконвертина,ф-9-ф.Кристмаса,ф-10-ф.Стюарта-Проуэра.

93.Кальцийтриол стимулирует всасываие Са и Р в кишечник.Д3 –единственный гормон,способствующий транспорту Са против концентрационного градиента,существующего на мембране клеток кишечника.Продукция Д3 строго регулируется,благодаря чему существует тонкий механизм,поддерживающий уровень Са во внеклеточной жидкости,несмотря на значит.колебания содержания Са в пищи.Этот механизм поддерживает такие концентрации Са и Р,которые необходимы для образования кристаллов гидроксиаппатита,откладываясь в коллагеновых фибриллах кости.При недостатке Д3замедляется формирование новых костей и нарушается обновление костной ткани.В регуляции этих процессов участвует ПТГ,воздействуя на клетки кости,и необходим Д3,способный усиливать действие ПТГ на реабсорбцию Са в почках.

94.Вит.Е(антистерильный)по хим.природе представляет собой альфа-,бета-,гамма-,δ-токоферолы,сут.потребность которого 5 мг.Источники:раст.масла.семена злаков,капуста,мясо,слив.масло,яичный желток.Вит.Е влияет на репродуктивную функцию и обмен селена в организме,выполняет антиоксидантную роль,защищая мембраны от перекисного окисления липидов,предотвращая тем самым гемолиз эритроцитов.вит.С(антицинготный,антискорбутный)по хим.природе-аскорбиновая к-та,сут.потребность 100мг.Вит.С является кофактором ферментных систем:1-,11-,17-,21-,25-гидроксилаз,гидроксилаз пролина,лизина,триптофана,фенилаланина,участвует в восстановлении Fe2+иFe3+.Источники6шиповник,черная смородина,болгарский перец,картофель,цитрусовы,ягоды рябины,хрен,укроп капуста.Гипо- и авитаминоз С приводит к нарушению биосинтеза коллагена,стероидных гормонов,адреналина,карнитина,гемоглобина и серотонина.

95 АКТГ(адренокортикотропный гормон) гипофиза,влияя на клубочковую зону коры надпочечников вырабатывает минерал кортикоиды,увеличивая секрецию альдостерона. А на выработку АКТГ влияет реакция волюморецепторов на изменение V циркулирующей крови. Альдостерон повышает концентрацию Na в крови,увеличивая осмотическое давление. При стрессовых ситуациях рефлекторно усиливается секреция адреналина мозговым слоем надпочечников,который воздействует на гипотоламус. При этом образуется кортикотропинвысвобождающий фактор,способствующий образованию в передней доли гипофиза АКТГ,стимулирующего выработку в коре надпочечников глюкокортикоидов,вырабатываемых в пучковой зоне и влияющих на углеводный белковый и жировой обмен.

В коре надпочечников синтезируется 40 различных стероидов, различающихся по структуре и биологической активности. Биологически активные кортикостероиды объединяют в три основных класса в зависимости от их преобладающего действия. Глюкокортикоиды-стероиды, играют важную роль в адаптации к стрессу. Они оказывают разнообразные эффекты, но наиболее важный-стимуляция глюконеогенеза. Основной глюкокортикоид человека-кортизол. Скорость синтеза и секреции кортизола стимулируется в ответ на стресс, травму, инфекцию. Повышение концентрации кортизола подавляет синтез кортиколиберина, и адренокортикотропного гормона по механизму отрицательной обратной связи. Катаболизм гормонов коры надпочечников происходит прежде всего в печени. Здесь протекают реакции гидроксилирования, окисления и восстановления гормонов. Продукты катаболизма кортикостероидов выводятся с мочой. Биологические функции кортикостероидов отличаются широким спектром влияния на процессы метаболизма. Важнейший фактор в механизме действия кортикостероидов-взаимодействие их со специфическими рецепторами, расположенными в цитозоле клеток или в ядре. Регуляция внутриклеточных процессов проявляется в изменении кол-ва белков путем регуляции транскрипции генов в клетках мишенях. Влияние глюкокортикоидов на протмежуточный метаболизм связано с их способностью воздействовать на разные ткани и процессы. Кортизол стимулирует образование глюкозы в печени, усиливая глюконеогенез и одновременно увеличивая скорость освобождения аминокислот- субстратов глюконеогенеза из перифирических тканей. Избыточное кол-во кортизола стимулирует липолиз в конечностях и липогенез в других частях тела. Глюкокортикоиды усиливают липолитическое действие катехламинов и гормона роста. Влияние глюкокортикоидов на обмен белков и нуклеиновых кислот проявляется двояко: в печени кортизол оказывает анаболический эффект. В мышцах, коже и костях кортизол тормозит синтез белков, РНК и ДНК и стимулирует распад РНК и белков. Высокая концентрация глюкокортикоидов вызывает торможение. Заболевания коры надпочечников могут проявиться симптомами гипо- и гиперпродукции гормонов. Острая недостаточность ф-ии коры надпочечников- декомпенсация хронических заболеваний. Гиперкортицизм может быть следствием повышения уровня адренокортикотропного гормона при опухолях гипофиза и других клеток. При гиперкортицизме наблюдаются гипергликемии и снижение толерантности к глюкозе.

96 Мозговой слой надпочечников – производные нервной ткани, продуцируют катехоламины – адреналин, норадреналин и дофамин. По хим. строению катахоламины – 3,4-дегидроксипроизводные фенилэтиламины. Катахоламины действуют на клетки-мишени через рецепторы, локализованные в плазматической мембране. Биологические эффекты адреналина и норадреналина затрагивает практически все функции организма. Общее во всех этих эффектах заключатся в стимуляции процессов, необходимых для противостояния организма к чрезвычайным ситуациям. Нервные центры гипоталамуса регулируют секрецию адреналина в хромофильной ткани мозгового слоя надпочечников. возбуждение симпатической нервной системы в стресавых ситуациях мобилизует энергетические ресурсы организма с тем, чтобы организм мог выдержать большие напряжения. При этом в кровь выбрасывается большое кол-во адреналина и норадреналина. Сначала адреналина вырабатывается больше, но при продолжительной стимуляции надпочечников адреналин уступает норадреналину.

97 Нервные центры гипоталамуса регулируют секрецию адреналина в хромофильной ткани мозгового слоя надпочечников. возбуждение симпатической нервной системы в стресавых ситуациях мобилизует энергетические ресурсы организма с тем, чтобы организм мог выдержать большие напряжения. При этом в кровь выбрасывается большое кол-во адреналина и норадреналина. Сначала адреналина вырабатывается больше, но при продолжительной стимуляции надпочечников адреналин уступает норадреналину.

98 Главный механизм регуляции синтеза и секреции альдостерона служит система ренин-ангиотензин. Ренин-протеолитический фермент, продуцируемый юкстагломерулярными клетками. Они особенно чувствительны к снижению перфузального давления. Уменьшение артериального давления сопровождается падением перфузионного давления в приносящих артериолах почечных клубочков и соответствующей стимуляции высвобождения ренина. Ангиотензин оказывает стимулирующее действие на продукцию и секрецию альдостерона клетками клубочковой зоны коры надпочечников, который вызывает задержку ионов натрия и воды, в результате чего объм жидкости в организме восстанавливается. Предсердный натриуретический фактор(ПНФ)- это пептид, содержащий 28 аминокислот с единственным дисульфидным мостиком. ПНФ синтезируется в кардиомиоцитах предсердий и хранится в виде препрогормона. Основным фактором, регулирующим секрецию предсердно натрийуретического фактора, являясь артериального давления. Другие стимулы секреции- увеличение осмолярности плазмы, повышение частоты сердцебиения. Основные клетки мишени ПНФ- это почки, и периферические артерии. В почках ПНФ стимулирует расширение приносящих артериол, усиление почечного кровотока, увеличение скорости фильтрации и экскреции ионов натрия. В периферических артериях ПНФ снижает тонус гладких мышц и расширяет артериолы. Таким образом, суммарным действием ПНФ является увеличение экскреции ионов натрия и понижение артериального давления.

99 Вазопрессин – пептид с М около 1100, содержащий 9 аминокислот, соединенных одним дисульфидным мостиком. Стимулом, вызывающим секрецию вазопрессина, служит повышение концентрации ионов Na и увеличение осмотического давления внеклеточной жидкости. При недостаточном потреблении воды, сильном потоотделении или после приема большого количества соли осморецепторы гипоталамуса, чувствительные к колебаниям осмолярности, регистрирует повышение осмотического давления крови. Возникают нервные импульсы, которые передаются в заднюю долю гипофиза и вызывает высвобождение вазопрессина. Секреция происходит также в ответ на сигналы от барорецепторов предсердий. Изменение осмолярности всего на 1% преводит к изменениям секреции вазопрессина. Альдостерон – наиболее активный минералокортикостероид, синтезирующийся в коре надпочечников из холистерола. Биологическим эффектом индуцируемых альдостероном белков является увеличение реабсорбции ионов натрия в канальцах нефронов, что вызывает задержку хлоридов натрия в организме, и возрастание экскреции калия. Гиперальдостеронизм – заболевание, вызванное гиперсекрецией альдостерона надпочечниками. Примерно у 80% больных причиной является аденома надпочечников, в остальных случаях – диффузная гипертрофия клеток клубочковой зоны, вырабатывающих альдостерон. Гипоальдостеронизм нарушает водно-минеральный обмен. Организм теряет Na и воду и накапливает калий, вследствие чего развивается гипотония, резкая мышечная слабость, прогрессирующая утомляемость вплоть до полного бессилия, к развитию несахарного диабета приводит дефицит вазопрессина, вызванный дисфункцией задней доли гипофиза, а также нарушением в системе передачи гормонального сигнала. Под названием «несахарный диабет» объединяют заболевания с разной этиологией. Основное проявление несахарного диабета – гипотоническая полиурия, т.е. выделение большого количества мочи низкой плотности.

100 Основные пищевые веш-ва: углеводы(у), белки(б), жиры(ж) окисляются в организме с освобождением свободной энергии, которая используется в анаболических процессах и при осуществлении физиологических ф-ций. Енергетическая ценность: У=4ккал/г, Ж=9ккал/г, Б=4 ккал/г. Взрослому челу в сутки требуется 2-3 тыс. ккал. При обычном ритме питания промежутки между приёмом пищи =4-5 ч с ночным перерывом 8-12 ч. Во время пищеварения и абсорбтивного периода основные энергоносители, используемые тканями (глюкоза, жирные кислоты, аминокислоты) могут поступать из ЖКТ. В постабсортивном периоде и при голодании энергетические субстраты образуется в процессе катаболизма депонированных энергоносителей. Изменения в потреблении энергоносителей и энергозатратах координируеются путём чёткой регуляции метаболических процессов в разных органах и системах организма. Основную роль в поддержании энергитического гомеостаза играют гормоны-инсулин и глюкогон. Обмен углеводов: т.к. засчёт мобилизации гликогена обеспечивается только кратковременное голодание, основным источником глюкозы при длительном голодании служит глюконеогенез(ГНГ) , а основными субстратами ГНГ-аминокислоты, лактат и глицерол. При низком содержании инсулина глюкоза используется только инсулинзависимыми тканями(мозг и эритроциты). Обеспечение энергетических потребностей других тканей-засчёт кислот и кетоновых тел. Обмен жиров: жирные кислоты, образующиеся в процессе мобилизации жиров в жировом депо, становится основным источником энергии для большинства органов в первый период голодания. Во второй фазе мобилизация жиров продолжается, и концентрация жирных кислот в крови возрастает в 3-4 раза по сравнению с постабсорбтивном состоянии. Синтез кетоновых тел начинается в первые дни голодания, во второй фазе скорость синтеза повышается, их концентрация может достигать 20-30 мг/децилитр(при норме 1-3 мг/дл). Используются кетоновые тела в основном в мышцах. В этот период голодания часть энергетических потребностей мозга обеспечиваются кетоновыми телами, а скорость окисления кетоновых тел мышцами понижается. Обмен белков в течение нескольких первых дней голодания быстро распадаются мышечные белки-основной источник субстрата для ГНГ. При голодании более 3-х недель скорость катаболизма белков стабилизируется и составляет около 20 г.в сутки. В этот период повышается потребление мозгом кетоновых тел а скорость ГНГ понижается. Это способствует сбережению белков. В этот период и для мозга кетоновые тела становятся значительным источником энергии, однако, для окисления кетоновых тел необходимы ЩУК и другие компоненты. В норме они образуются из глюкозы и аминокислот, а при голодании только из аминокислот. Продолжительность голодания более 4-х недель развиваются атрофические процессы, в результате которых происходит потеря значительного кол-ва белка.

101 Сахарный диабет(СД)- заболевание, возникающее вследствие абсолютного или относительного дефицита инсулина. Основные формы СД: согласно данным ВОЗ СД классифицируют с учетом различия генетических факторов и клинического течения на 2 основные формы: 1) диабет 1-го типа ( инсулинзависимый- ИЗСД)- заболевание, вызываемое разрушением бета клеток островка Лангерганса поджелудочной железы. 2) диабет 2-го типа ( инсулиннезависимый-ИНСД)- общее название нескольких заболеваний, развивающихся в результате относительного дефицита инсулина, возникающего вследствие нарушения секреции инсулина, нарушения превращения проинсулина в инсулин, повышения скорости катаболизма инсулина. Механизмы развития диабетической комы (ДК): Диабетическая кома проявляется в резких нарушениях всех функций организма с потерей сознания. Основные предшественники ДК- ацидоз и дегидротация тканей. В основе нарушения вводно-электролитного обмена лежит гипергликемия, сопровождающаяся повышением осмотического давления в сосудном русле. ДК развивается медленно, в течение нескольких суток. Признаки: тошнота, рвота, заторможенность. Коматозные состояния при СД могут проявляться в 3-х формах: кетоацидотический- развивается только при ИЗСД. Характерно: выраженный дефицит инсулина, кетоацидоз, полиурия, полидепсия; гипероосмолярный- наблюдают высокий уровень глюкозы в плазме крови, полиурию, полидепсию, тяжелую дегидротацию. Характерно для СД 2-х типов; лактоацидотический- преоблодают гипотония, снижение периферического кровообращения, гипоксия тканей. Поздние осложнения СД: 1- гипергликемия: приводит к повреждению кровеносных сосудов и нарушению функций различных тканей и органов. Одним из основных механизмов повреждения тканей являются гликозилирование белков, приводящее к изменению их конформации и функций. Один из признаков СД является увеличение в 2-3 раза гликозилированного Hb. 2- причиной многих поздних осложнений СД служит увеличение скорости превращения глюкозы в сорбитол. Сорбитол не используется в других метаболических путях, а скорость его диффузии из клетки не велика. У больных СД сорбитол накапливается в сетчатке и хрусталике, клетках клубочков почек, Швановских клетках, эндотелии. Диабетические ангиопатии: обусловлены поражением базальных мембран.

102 Гликопротеиды-белки,которые содержат олигосахаридные цепи разной длины, ковалентно присоединненые к полипептидной основе. Углеводный компонент кликопротеидов меньше по массе, чем у протеогликанов и составляет не более 40% от общей массы. Они выполняют в оганизме разные функции и присутствуют во всех классах белков-ферментах,гормонах,транспортных и структурных белках. Представители гликопротеидов-коллаген и эластин, имунноглобулины, ангиотензиноген, трансферрин, церулоплазмин, внутренний фактор Касла, тириотропный гормон.

103 Биохимия межклеточного матрикса суставного хряща. Основные компоненты: коллаген 2 типа, агрекан, глюкуроновая кислота, вода. Кроме них в матриксе находится мало протеогликанов, коллагены 6,9,11 типов, связывающий белок, другие неколлагеновые белки, разнообразные факторы роста. “Эндоскелет” хрящевого матрикса образован фибриллярной сетью, которая состоит из коллагена 2,9,11 типов и предают хрящу прочность. Высокомолекулярные агрегаты, состоящие из агрекана и гиалуроновой кислоты являются полианионами. Это способствует высокой гидратации хрящевого матрикса, выполнение им рессорной функции. Содержание воды в хряще непостоянно. При нагрузки жидкость вытесняется, при прекращение нагрузки вода вновь возвращается в хрящ. Теории минерализации кости: термином биологической минерализации обозначает процесс отложения неорганических химических компонентов в нормальной или в патологически изменнёной ткани. Щёлочно-фосфатазная теория: исходя из этой теории щелочная фосфатаза(фосфомоноэстераза) отщепляет ортофосфат от органических фосфорно-эфирных соединений, увеличивая в местах кальцификации произведение концентраций ионов Ca и фосфата до величины, достаточной для преципитации фосфата Ca. Теория Уоделла: предполагает участии кальцийсвязывающего неколлагенового белка и локальное изменение pH в участках присоединения Ca в щелочную сторону, что резко уменьшает растворимость фосфата Ca. Теория “вспомогательного механизма” плюс “местный фактор”- описывает участие в кальцификации митохондрий. Сопряжено с окислительным фосфорилированием митохондрия может аккумулировать Ca и неорганический фосфат в форме минеральных гранул. Теория “эпитаксии”- ориентированный рост кристаллов на пов-ти другого кристалла. В организме взрослого чела больше 1-ого кг. Ca, который почти целиком находится в костях и зубах, образуя вместе с фосфатом гидроксиатит Ca. Кроме того во всех клетках Ca играет роль важного клеточного регулятора между гормонами белковой природы и ферментами. В питании чела Ca играет очень важную роль. Всасывание Ca регулирует вит. D.

104 Мышечная ткань составляе 40-42% от массы тела. Стр ед мыш ткани явл мышечное волокно, в кот различают сарколемму, саркоплазму, пучки миофибрилл и опорные белки стромы (каллоген и элластин). В сарколемме много ядер, митохонднрий, полисом; в ней содерж липиды, гликоген, миоглобин, ферменты и азотосодерж небелковые в-ва (креатинин, креатин). Белки миофибрилл бывают сокр-е (актин и миозин – 80%) и регуляторные (тропонин и тропомиозин – 20%). Миозин имеет стр-ру ассиметрического гексамера, состоящего из 2х идентичных тяжёлых и 4х лёгких полипептидных цепей. Тяжёлые цепи заканчиваются головками. Саркомер – функциональная ед миофибрилл.

105 Клеточный состав нервной ткани: нейроны и нейроглия. Нейроны – это осн функц ед нервной ткани непосредственного контакта с кровью не имеют, т.к. отделены гематоэнцефалическим барьером, представленным сплошным эндотелием, утолщённой базальной мембраной и слоем глиоцитов, создающих доп слой на пов-ти стенок капилляров. Особенностью нерв ткани явл исп липидов в кач стр-го мат-ла, в то время как в др тканях эту ф-ю вып белки липиды представлены цереброзидами, ганглиозидами, сфингомиелинами, плазмалогенами, фосфотидилсиринами, фосфотидилхолинами и холистерином. Миелиновые мембраны имеют 3 слоя белка и 2 слоя липидов, в кот входят фосфотидилсерин, цереброзин, сфингомиелины и холистерин. В сером в-ве головного мозга 5% липидов, в белом – 17%. Специфич-ми белками явл: белок S-100, нейрофизин, нейротубулин и нейростенин. Пептиды: карнозин, анзерин, гумокарнозин, энкефалин и пептид сна. В нервной ткани концентр свободных аминок-т в 8 раз большеЮ чем в плазме крови. Центр место в обмене принадлежит глутаминовой к-те, глутамину и аспарагиново й к-те. Глутаминовая к-та нейтрализует аммиак в нерв ткани, превращаясь в глутами, кот удаляется через гемоэнцефалический барьер в кровь.

106 Инсулин-полипептид, состоящий из 2-х полипептидных цепей. Цепь А содержит 21 аминокислотный остаток, цепьБ-30 аминокислотных остатков. Обе цепи соединены между собой 2-я несульфидными мостиками. Инсулин может существовать в нескольких формах: мономера, димера и гексамера. Инсулин- главный анаболический гормон. Он участвует в регуляции метаболизма, транспорта глюкозы, аминокислот, в синтезе белков. Инсулин влияет также на процессы репликации и транскрипции, участвуя в регуляции клеточной дифференцировки, пролиферации и трансформации клеток. Инсулин стимулирует утилизацию глюкозы в клетках разными путями. Около 50% глюкозы используется в процессе гликолиза, 30-40% превращается в жиры и около 10% накапливается в форме гликогена. Общий результат стимуляции- снижение концентрации глюкозы в крови. В печени и жировой ткани инсулин стимулирует синтез жиров, обеспечивая получение для этого процесса необходимых субстратов из глюкозы. Под влиянием инсулина снижается концентрация жирных кислот, циркулирующих в крови. Инсулин стимулирует потребление нейтральных аминокислот в мышцах и синтез белков в печени. Глюкогон- одноцепочечный полипептид, состоящий из 29 аминокислотных остатков. Эффекты глюкогона в основном противоположны эффектам инсулина. Основные клетки мишени глюкогона- печень и жировая ткань.

107 Приблизительно 75-90% принятых внутрь фторидов всасывается в желудочно-кишечном тракте (в большей степени из жидкостей). Полупериод всасывания составляет примерно 30 минут, так что пик концентрации в плазме обычно находится в диапазоне от 30 до 60 минут. Менее 1% суточного количества принятого внутрь фтора всасывается через слизистую оболочку полости рта. NaF и NaSiF – растворимые соединения, используемые для фторирования воды. Высокое содержание в пищевом рационе кальция и других катионов, связывающих фторид-ион и образующих с ним нерастворимые соединения, ограничивает всасывание фторидов из ЖКТ. Фториды присутствуют в плазме крови в двух главных формах. Ионизированный фтор не связан с белками плазмы и другими ее компонентами или с мягкими тканями. Другая форма - это несколько жирорастворимых органических соединений фтора, попадающих в организм как загрязнители пищевых продуктов, включающиеся в их состав в процессе при­готовления и упаковки. Около 10-25 % поступившего в организм фторида не всасывается и элиминируется с калом. Почти 99 % фтора в организ­ме находится в твердых тканях в составе апатита - ос­новного фосфата кальция [Са10(РО4)6(ОН)2].Содержание фтора в кости и зубной эмали составляет обычно 0,05 моль/кг и свидетельствует об отношении гидро­ксила к фтору в молекуле апатита как 40:1. Фтор обладает высоким сродством к белку матрикса эмали и. включаясь в эмаль зубного зачатка еще до начала его минерализации, может способствовать фор­мированию центров кристаллизации (нуклеации) апатита. К проявлениям недостаточности фтора относят остеопороз и кариес зубов. Фтор может играть существенную роль не только в начальных стадиях минерализации твердых тканей, но и предупреждать их деминерализацию. Фтор придает кристаллам фторапатита большую упорядоченность, снижая тем самым их растворимость при физи­ологическом значении рН. Вместе с тем, поскольку экзогенный фтор замещает гидроксил-ион в преобразованных кристаллах гидроксиапатита, го это замещение происходит в первую очередь в наружных слоях эмали толщиной 1-5 мкм, что снижает их растворимость даже три незначительном общем повышении концентрации фтopa в зубах. К другим причинам защитного действия фтора может относиться: 1)изменение термодинами­ческих характеристик эмали; 2)облегчение реминерализации эмали; 3)антибактериальное действие.

108)Соедини́тельная ткань — это ткань живого организма, не отвечающая непосредственно за работу какого-либо органа или системы органов, но играющая вспомогательную роль во всех органах, составляя 60—90 % от их массы. Выполняет опорную, защитную и трофическую функции. Соединительная ткань образует опорный каркас (строму) и наружные покровы (дерму) всех органов. Общими свойствами всех соединительных тканей является происхождение из мезенхимы, а также выполнение опорных функций и структурное сходство.

Большая часть твёрдой соединительной ткани является фиброзной (от лат. fibra — волокно): состоит из волокон коллагена и эластина. К соединительной ткани относят костную, хрящевую, жировую и другие. К соединительной ткани относят также кровь и лимфу. Поэтому соединительная ткань — единственная ткань, которая присутствует в организме в 4-х видах — волокнистом (связки), твёрдом (кости), гелеобразном (хрящи) и жидком (кровь, лимфа, а также межклеточная, спинномозговая и синовиальная и прочие жидкости).

Соединительная ткань состоит из внеклеточного матрикса и нескольких видов клеток. Клетки, относящиеся к соединительной ткани:

фибробласты — производят коллаген и другие вещества внеклеточного матрикса, способны делиться.

фиброкласты — клетки, способные поглощать и переваривать межклеточный матрикс; являются зрелыми фибробластами, к делению не способны.

меланоциты — сильно разветвлённые клетки, содержащие меланин, присутствуют в радужной оболочке глаз и коже (по происхождению — эктодермальные клетки, производные нервного гребня

макрофаги — клетки, поглощающие болезнетворные организмы и отмершие клетки ткани (по происхождению моноциты крови)

эндотелиоциты — окружают кровеносные сосуды, производят внеклеточный матрикс и продуцируют гепарин. Эндотелий по большинству признаков относят к эпителию.

тучные клетки — продуцируют метахроматические гранулы, которые содержат гепарин и гистамин.

мезенхимные клетки — клетки эмбриональной соединительной ткани

Хрящ-2% массы тела.Хондроцит-основная клетка хрящевой ткани. Формируются из хондробластов, но при этом малоактивные хондроциты сохраняют способность к делению. синтез и выделение компонентов межклеточного вещества, образующего аморфное вещество и волокнистые структуры хряща. Компоненты межклеточного вещества состоят из воды, протеогликановых агрегатов, гликопротеинов, минеральных веществ, коллагена.

Кости-клетки и обызвествл межкл в-во.Остеоциты-не делятся, Составляют основную часть клеток, поддерживают норм состояние костного матрикса и баланса Ca и P в организме.Остеокласты- многоядерные гигантские клетки, осуществляют разрушение или резорбцию костной ткани.Поддерж кальциевый гомеостаз.Остеобласты- образ. костную ткань.Синтез матрикса, участие в обызвествлении, регуляция Ca и Р гомеостаза.В костях содержится примерно 99% Са, 87% Р, 50%Mg, 46%Na. В компактом веществе костей содержится в среднем 70% неорганических веществ, 20% органических и 10% воды. В губчатой кости соотношение иное: минеральные компоненты составляют 35-40%. органические 50-55% и вода 10-15%. Более 95% органического матрикса кости приходится на фибрилярный белок коллаген I типа.

Зубы- Эмаль. Вода находится здесь в двух видах: свободная и связанная (гидратная оболочка кристаллов апатитов).

Минеральная основа(95%) — кристаллы апатитов: ГА — 75 %; остальное — фторапатит, карбонатный апатит, хлорапатит. В наружном слое много Са, Р и F (в 10 раз больше, чем в подлежащих слоях), поэтому он более устойчив к действию кислот. Кроме F, есть Zn, Pb, Sb, Fe. В глубоком слое много Na, Mg, карбонат-иона. По всей толщине эмали равномерно распределены Sr, Cu, Al, K.

Органический компонент — неколлагеновые белки, пептиды, липиды, моносахариды.

ГА — кристаллы гидроксиапатита:

Неколлагеновые белки — амелогенины, энамелины, Са-связывающий белок эмали. В процессе созревания эмали количество амелогенинов уменьшается, а энамелинов — увеличивается. Энамелины прочно присоединяются к кристаллам апатитов.

Са-связывающий белок играет главную роль в формировании белковой матрицы — основы эмали. Трехмерная сеть эмали образуется путем объединения в пространстве молекул Са-связывающего белка с ионами Са. Эта сеть (матрица) — зона нуклеации для роста кристаллов ГА. Она фиксируется на волокнах амелогенинов.

Дентин. Первичный дентин образуется в период прорезывания и формирования зубов, составляет основную часть дентина; вторичный (физиологический вторичный) образуется в сформированном зубе после прорезывания и является продолжением первичного; третичный (репаративный вторичный) образуется в ответ на действие раздражающих факторов напротив пораженного участка эмали. Отростки одонтобластов проходят через дентин до эмали и формируют каналы для трофики (питания) зуба. Они заполнены дентиновой жидкостью, которая выполняет минерализующую и сенсорную функции.

Минеральный компонент(70%) — ГА, но соотношение Са/Р не 1,67, а 1,5–1,67. F в 2 раза больше, чем в эмали, а Mg в 3 раза больше, чем в костях.

Органический компонент — коллаген I типа и неколлагеновые белки (протеогликаны и фосфопротеины). Они способны связывать кальций и соединяться с коллагеном.

В дентине есть и аморфная (некристаллическая) фаза, в которой имеются фосфат и карбонат кальция.

Цемент. Похож на костную ткань, поэтому называется «костаген», но в отличие от нее не имеет сосудов и не подвергается постоянной перестройке.

Минеральный компонент(60%) — в основном ГА.

Органический компонент — коллаген I типа, протеогликаны, липиды.

Пульпа. Содержит сосуды и нервы и выполняет трофическую, защитную, репаративную функции.Состоит из межкл в-ва и клеток(фибробласты, одонтобласты, макрофаги и т.п.)Межкл в-во- коллаген и ретик волокна.

109. Пелликула - производное слюны, состоит из аминокислот и Сахаров, из которых образуются полисахариды. Существует мнение, что пелликула образуется на кристаллах гидроксиапатитов. Роль пелликулы неоднозначна: с одной стороны, она выполняет защитную функцию, предохраняя кристаллы эмали от действия кислот, поступающих в полость рта, с другой - способствует прикреплению микроорганизмов и образованию их колоний - зубногоналета. Образование налета происходит в определенной последовательности: 1) прикрепление бактерий к пелликуле; 2) образование внеклеточной структуры (матрикса); 3) рост бактерий и образование зубного налета.

Зубной налёт — плотное образование, которое состоит из бактерий, белков слюны, остатков пищи. Он образуется путем оседания микроорганизмов на зубную эмаль, и растет за счет постоянного наслаивания новых бактерий. Кальцификация зубного налета приводит к образованию зубного камня. Зубной налет на поверхности зуба образуется микроорганизмами полости рта. Продуктами жизнедеятельности микрофлоры зубного налета являются различные кариесогенные факторы: органические кислоты, аминокислоты, ферменты. Их образование в значительной мере стимулируется наличием легкоусвояемых углеводов в пище. В образовании зубной бляшки и развитии кариеса большое значение имеют факторы ротовой среды, создающие условия для микробного обитания. Среди них важная роль отводится плохому гигиеническому уходу за зубами, что способствует накоплению мягкого налета с последующим образованием на зубах микробной бляшки. Зрелая зубная бляшка представляет собой структурно сложное полимикробное образование толщиной до 200 мкм. Она очень опасна для эмали зуба, т.к. разрушает ее. В зрелом зубном налете могут произойти изменения состава микроорганизмов, снижение продукции кислоты и увеличение рН, накопление кальция и его отложения в виде фосфорнокислых солей, т.е. зубной налет превращается в зубной камень. Причины возникновения зубного камня — несоблюдение гигиены полости рта, привычка принимать только мягкую пищу, жевать на одной стороне. Так же причиной повышенного камнеобразования может быть недостаток естественных пирофосфатов в составе слюны, а так же отсутствие специфического белка слюны, предотвращающего оседание солей кальция в мягкий зубной налёт.

110 Коллагены- семейство родственных фибриллярных белков, секретируемых клетками соед ткани. Коллагены- самые распространенные не только межклеточного матрикса, но и организма в целом. В межкл матриксе молекулы коллагена образуют полимеры = фибриллы коллагена. Они обладают высокой прочностью и практически нерастяжимы. Молекулы коллагена состоят из 3 полипептидных цепей = L-цепи. В состав коллаген могут входить 3 одинаковые или разные цепи. Первичная стр-ра L-цепей: каждая 3 аминок-та в полипептидной цепи представлена глицином, около1/4 – пролин, 11% аланин. Полипептдную цепь коллагена можно представить как последовательность триплетов Гли-Х-У, где Х и У могут быть любыми аминок-ми. Типы коллагена: 1 – кожа, сухожилия, кости, роговица, плацента, артерии, дентин, печень 2 – хрящи, межпозвоночные диски, стекловид тело, роговица 3 – артерии, матка, кожа плода 4 – базальная мембрана 5 – кожа, Роговица, кости, хрящи, плацента 6 – хрящи, кровенос сосуды, связки, кожа, матка, легкие 7 – амнион, пищевод, кожа, роговица, хорион 8 – роговица, кров сосуды 9 – хрящи, межпозвон диски, стекл тело 10 – гипертрфированные хрящи 11 -2 12 -1 13 – многие ткани 14 -1 15 – многие тк 16- многие тк 17 – гемидесмослмы кожи 18 – многие тк 19 – клетки рабдомиосаркомы.

111) На 97,5-99,5% состоит из воды, 0,5-2,5 приходится на сухой остаток около 2/3 которого составляют органические вещества и 1/3 минеральные. Общая концентрация минеральных составных частей в слюне ниже чем в плазме крови, т.е. слюнные железы выделяют гипотаническую жидкость. К минеральным компонентам относятся Са„ К, Na, Fe, Si, Al, Zn, Cr, Mn, Си и др. катионы, а так же анионы - хлориды, фосфаты, бикарбонаты, проданиды, йодиды, сульфаты, бромиды и фториды. В смешанной слюне Mg Содержание магния с возрастом увеличивается. При ношении металлических коронок в слюне обнаруживаются ионы серебра, титана, никеля, свинца и др. в виде хлоридов, бикарбонатов, фосфатов и сульфатов.

В слюне обнаружены родониды (тиоцнанаты)- продукты сульфирования цианидов. Количество роданидов увеличено у курильщиков. Принято считать, что слюна концентрирует роданиды.

Минерализующее действие слюны. В основе этого процесса лежат механизмы, препятствующие выходу из эмали ее компонентов и способствующие их поступлению из слюны в эмаль.

Кальций в слюне находится как в ионном, так и связанном состоянии. Считают, что в среднем 15 % кальция связано с Белками, около 30 % находится в комплексных связях с фосфатами, цитратами и только 5 % - в ионном состоянии. Именно этот ионизированный кальций участвует в процессах реминерализации.

В настоящее время установлено, что ротовая жидкость при нормальных условиях (рН 6,8 - 7,0) пересыщена кальцием и фосфором. При снижении рН растворимость гидроксиапатита эмали в ротовой жидкости значительно увеличивается.

Например, при рН 6,0 ротовая жидкость становится кальцийдефицитной. Таким образом, даже незначительные колебания рН, не способные сами по себе вызвать деминерализацию, могут активно влиять на поддержание динамического равновесия эмали зуба.

Физико-химическое постоянство эмали полностью зависит от состава и кислотно-основного равновесия ротовой жидкости. Главным фактором стабильности апатитов эмали в слюне являются рН и концентрация кальция, фосфата и фтористых соединений.

Ротовая жидкость - это лабильная среда, и на ее количественный и качественный состав влияет множество факторов и условий, но в первую очередь - состояние организма. С возрастом секреторная функция больших и малых слюнных желез уменьшается. Нарушение слюноотделения происходит также при острых и ряде хронических заболеваний. Так, при заболевании ящуром развивается избыточное выделение слюны (до 7 - 8 л в сутки), что служит одним из важных диагностических признаков. При гепатохолециститах, наоборот, отмечается гипосальвация, и больные жалуются на сухость в полости рта. При сахарном диабете увеличивается содержание глюкозы в ротовой жидкости. Большое влияние на состав и свойства ротовой жидкости оказывает гигиеническое состояние полости рта. Ухудшение ухода за полостью рта приводит к увеличению налета на зубах, повышению активности ряда ферментов (фосфатазы, аспарагиновой трансаминазы), увеличению осадка слюны, быстрому размножению микроорганизмов, что создает условия, особенно при частом приеме углеводов, для продуцирования органических кислот и изменения рН.

112) 99 % F в виде фторапатита входит в состав костей и зубов, придает им прочность и кислотоустойчивость.

Стимулирует реминерализацию костей и зубов (поступление в них кальция и фосфора).

Стимулирует синтез костной ткани, иммунитет (в том числе полости рта), гемопоэз.

Блокирует енолазу микроорганизмов (прекращается синтез лактата, который снижает рН ротовой жидкости) и синтез микроорганизмами внеклеточных полисахаридов.

Изменяет электрический потенциал поверхности эмали и препятствует адгезии бактерий к эмали.

Больше всего F в морепродуктах, зеленом и черном чае, красном вине. Много F в районах комбинатов по выпуску фосфорных удобрений, сжигания каменного угля.

Основная роль в организме - участие в костеобразовании и процессах формирования дентина и зубной эмали. Также фтор стимулирует кроветворную систему и иммунитет, участвует в развитии скелета, стимулирует репаративные процессы при переломах костей. Предупреждает развитие сенильного остеопороза.

При недостатке F кариес, при избытке — флюороз: «крапчатая», «пятнистая» эмаль зубов; минерализация хрящей и связок, остеосклероз скелета; раннее старение; снижение иммунитета и гормональной активности.

В организме человека фтор, в основном, содержится в эмали зубов в составе фторапатита — Ca5F(PO4)3.

113. Белки слюны:

Лизоцим 18% Альбумины 7-8% Альфа-глобулины 10% Бета-глобулины 43% Гамма-глобулины 19%

Муцины — защитные белки: защищают поверхность зуба от бактериального загрязнения и от растворения фосфатов кальция, придают вязкость слюне, связывая много воды.

Цистатины: ингибируют бактериальные протеазы и протеазы периодонтальных тканей.

Гистатины: богаты ГИС и являются мощными ингибиторами роста Candida albicans и Str. mutans.

Белки, богатые ПРО: содержат много Н3РО4, из-за «–» заряда тормозят рост кристаллов в слюне, связывая Са2+.

Лактоферрин: способен связывать ионы железа, лишая бактерии этого важного элемента и ограничивая их рост, хотя некоторые бактерии способны усваивать и такое, связанное с лактоферрином, железо.

Классификация белковых соединений:

А)слизеподобные белки (муцин)

Б)ферменты(амилаза,мальтаза,гиалуронидаза,пепсиноген,пептидазы,липазы, эстеразы,фибринолизин,фибриназа, нуклеазы( Замедляют рост и размножение многих микроорганизмов в полости рта)

В)иммунные факторы (лизоцим,лактоферрин, фосфопротеины,иммуноглобулины)

Г)БАВ (фр,циткины, гормональные в-ва, С-паротин и др)

114) Смешанная слюна здорового человека в нормальных условиях представляет собой вязкую, слегка опалесцирующую жидкость. 99,4–99,5 % слюны человека составляет вода. Остальные 0,5–0,6 % — органические и неорганические компоненты. Среди органических веществ: белки (1,4–6,4 г/л), муцин (слизь) (0,8–6,0 г/л), холестирол (0,02–0,5 г/л), глюкоза (0,1–0,3 г/л), аммоний (0,01–0,12 г/л), мочевая кислота (0,005–0,03 г/л). Из неорганических веществ в слюне представлены анионы хлоридов, бикарбонатов, сульфатов, фосфатов; катионы натрия, калия, кальция магния, а также микроэлементы: железо, медь, никель и др.

Важнейшими ферментами слюны являются амилаза и мальтаза, действующие только в слабощелочной среде. Амилаза расщепляет крахмал и гликоген до мальтозы. Мальтаза расщепляет мальтозу до глюкозы. В слюне также имеются протеиназы, липазы(у детей), фосфатазы, лизоцим и др.

Кислотность слюны зависит от скорости слюноотделения. Обычно кислотность смешанной слюны человека равна 6,8–7,4 pH, но при большой скорости слюноотделения достигает 7,8 pH. Кислотность слюны околоушных желёз равна 5,81 pH, подчелюстных — 6,39 pH. Плотность слюны 1, 001–1, 017.

Противокариозное действие слюны. Было установлено, что вскоре после поступления в полость рта твердой углеводистой пищи концентрация глюкозы в слюне снижается, причем вначале быстро, а затем медленно. Большое значение при этом играет скорость слюноотделения — усиление слюноотделения способствует более активному вымыванию углеводов. При этом не происходит выведения фторидов, так как они связываются с поверхностями твердых и мягких гканей полости рта, высвобождаясь в течение нескольких часов. Благодаря присутствию фторидов в слюне баланс между де- и реминерализацией смещается в сторону последней, что обеспечивает противокариозный эффект. Установлено, что этот механизм реализуется даже при относительно низких концентрациях фторидов в слюне.

Влияние слюны на ускорение выведения глюкозы является не единственным механизмом снижения поражаемости кариесом. Более выраженное противокариозное действие обеспечивается ее способностью к нейтрализации кислот и щелочей, т. е. буферным эффектом, благодаря присутствию гидрокарбонатов натрия.

Слюна в норме пересыщена ионами кальция, фосфора и гидроксидапатита, соединения которых формируют основу тканей зуба. Степень пересыщенности еще более высока в жидкой фазе зубного налета, которая находится в непосредственном контакте с поверхностью зуба. Пересыщенность слюны ионами, составляющими основу тканей зуба, обеспечивает их поступление в ткани, т. е. является движущей силой минерализации. При снижении рН зубного налета пересыщенное состояние слюны ионами кальция, фосфора и гидроксиапатитов уменьшается, а затем вовсе исчезает.

В реминерализации подповерхностных слоев эмали участвует также ряд белков слюны. Молекулы статхерина и кислых, Гюгатых пролином белков, а также некоторых фосфопротеинов, связывающих кальций при снижении рН в зубном налете, освобождают ионы кальция и фосфора в жидкую фазу зубного налета, что поддерживает реминерализацию.

Из других противокариозных механизмов следует указать на образование пленки (пелликулы) на поверхности имали слюнного происхождения. Эта пленка препятствует прямому контакту эмали с поступающими в полость рта кислотами и, тем самым, исключает выход кальция и фосфора из ее поверхности.

Гиигивальная жидкость.

Имеет сложный состав: НЮ, белки, ферменты, различные органические вещества, электролиты, лейкоциты, служенные эпителиальные клетки. Десневая жидкость - местный фактор защиты полости тра. Защитное действие обусловлено наличием лейкоцитов, иммуноглобулинов, ферментов. Наличие постоянного тока десневой жидкости способствует механическому удалению микробов, веществ, басктерий. Десневая жидкость - трансудат сыворотки. В течении суток при интактном пародонте в полость рта поступает 0,2-2,5 мл гингивальной жидкости. Ее количество увеличивается в предвослалительной стадии. За счет осмотического градиента и резко увеличивается при воспалительной эксудации. рН 6,3-7,93 и не зависит от степени воспаления. Белковый состав гингивальной жидкости и сыворотки крови практически одинаков: альлбумины, трансферин, 7-глобулины. Десневая жидкость - важный источник иммуноглобулинов IgA, IgG; IgM; антитела. Обнаружена система комплемента: -фибриноген, фибринолдизин, плазмоген, брагикинин, ферменты. Существует зависимость между активностью ферментов и воспалением в тканях пародонта. Гингивальная жидкость содержит все 5 ферментов: ЛДГ, р-глюкоронидазу (активация увеличивается при пародонтитах), лизоцин, лактоферрин, пероксидаза и глюкоронидаза. Обнаружены протеолитические ферменты (протеиназы, элластазы, аминопептидазы) Активация увелич. при воспалении пародонта. Обнаружены и другие органические вещества: глюкоза, фосфолипиды, уроновые кислоты, нейтральные липиды, лактат, мочевина. Электролитный состав: Na, К - выше по сравнению с сыворот., а соотношение Na/K ниже. Na увелич

при воспалении пародонта. Десневая жидкость один из источников F в полости рта. Содержится так же Ca, P, сера, Zn.

115) На 97, 5 - 99, 5% состоит из воды, 0,5 - 2,5% приходится на сухой остаток, около 2/3 которого составляют органические вещ-ва и 1/3 минеральные. Общая концентрация минеральных составных частей в слюне ниже, чем в плазме крови, т.е. слюнные железы выделяют гипотоническую жидкость. К минеральным компонентам относятся Ca, К, Nа, Fe, Si, Al, Zn, Cr, Mn, Cu и др. катионы, а так же анионы - хлориды, фосфаты, бикарбонаты, роданиды, йодиды, сульфаты, бромиды и фториды.Содержание Са в слюне 4 - 8 мг/100 мл. Приблизительно в 2 раза ниже, чем в сыворотке крови.

Содержание фосфора в слюне достигает 10 - 25 мг/100мл. В слюне содержание фосфатов в несколько раз выше, чем в сыворотке крови. Содержание фтора в слюне составляет 5,3-15,8 млэкв/л.В смешанной слюне содержится 0,4-0,9 млмоль Мg. Содержание магния с возрастом увеличивается.В слюне обнаружены роданиды (тиоцианаты) - продукты сульфирования цианидов. Количество роданидов увеличено у курильщиков. Принято считать, что слюна концентрирует роданид.

116 Витамины- группа незаменимых пищевар факторов. Концентрация витаминов в тканях и суточ потреб невелики. При недостат поступлении их в организм наступает опасные патологические изменения.Причины гиповитаминозов: 1. недостаток вит в пище2. нарушение всасывания в ЖКТ 3. врожденные дефекты ферментов, участвующих в превращении ферментов.4. действие структурных аналогов витаминов (антивитамины) витамин К- жирорастворим. Источники: растительные и жив продукты(капуста, фрукты, печень), синтезируется микрофлорой кишечника. Суточная потребность 1-2 мг. Биол функция: участвует в активации факторов свертывания крови: 2,7,9,11.

117) Рахит- заболевание детей грудного и раннего возраста, протекающее с нарушением образования костей и недостаточностью их минерализации, обусловленное главным образом дефицитом витамина D. В сложных механизмах развития рахита основное место принадлежит гиповитаминозу D. Состоит из феролов, приобретающих активность при ультрафиолетовом облучении. Его специфическая функция заключается в регуляции процессов всасывания кальция, фосфора в кишечнике и отложения их в костную ткань, а также реабсорбции кальция и фосфатов в почечных канальцах.

Кариес- в настоящее время возникновение кариеса зубов связывают с локальным изменением pH на поверхности зуба под зубным налётом вследствие брожения (гликолиза) углеводов, осуществляемого микроорганизмами, и образования органических кислот.При рассмотрении механизмов возникновения кариеса зуба обращает на себя внимание многообразие различных факторов, взаимодействие которых и обуславливает возникновение очага деминерализации: микроорганизмы полости рта, характер питания (количество углеводов), режим питания, количество и качество слюноотделения (реминерализующий потенциал слюны, буферные свойства, неспецифические и специфические факторы защиты слюны), сдвиги в функциональном состоянии организма, количество фтора, поступающего в организм, влияние окружающей среды и т. д. Однако основные факторы для возникновения кариеса следующие: кариесвосприимчивость зубной поверхности, кариесогенные бактерии, ферментируемые углеводы и время.

При недостатке F кариес, при избытке — флюороз: «крапчатая», «пятнистая» эмаль зубов; минерализация хрящей и связок, остеосклероз скелета; раннее старение; снижение иммунитета и гормональной активности.

118) 99 % F в виде фторапатита входит в состав костей и зубов, придает им прочность и кислотоустойчивость.

Стимулирует реминерализацию костей и зубов (поступление в них кальция и фосфора).

Стимулирует синтез костной ткани, иммунитет (в том числе полости рта), гемопоэз.

Блокирует енолазу микроорганизмов (прекращается синтез лактата, который снижает рН ротовой жидкости) и синтез микроорганизмами внеклеточных полисахаридов.

Изменяет электрический потенциал поверхности эмали и препятствует адгезии бактерий к эмали.

Больше всего F в морепродуктах, зеленом и черном чае, красном вине. Много F в районах комбинатов по выпуску фосфорных удобрений, сжигания каменного угля.

Основная роль в организме - участие в костеобразовании и процессах формирования дентина и зубной эмали. Также фтор стимулирует кроветворную систему и иммунитет, участвует в развитии скелета, стимулирует репаративные процессы при переломах костей. Предупреждает развитие сенильного остеопороза.

При недостатке F кариес, при избытке — флюороз: «крапчатая», «пятнистая» эмаль зубов; минерализация хрящей и связок, остеосклероз скелета; раннее старение; снижение иммунитета и гормональной активности.

В организме человека фтор, в основном, содержится в эмали зубов в составе фторапатита — Ca5F(PO4)3.

119. Молекула-длинная цепь из повтор.дисахаридного фр.: глукуроновая (идуроновая к-та) + глюкозамин(галактозамин)

1)Гиалуроновая к-та – несульфат.ГАГ,неразветвл.цепь. глюкурон.к-та + глюкозамин.. есть в синовиальн. Ж-ти, стекловидном теле, РВСТ. Разрушается гиалуронидазой.

2) х-4-с. Глюк.к-та +галактозамин+остаток серной к-ты в 4 полож. В хряще,кости,роговице.

3)х-6-с . Глюк.к-та +галактозамин+остаток серной к-ты в 6 полож.Содеож. в коже, сухожилиях, связках,пупочном канатике,серд.клапанах.

4)дерматансульфат. 2 вида повт.фрагмента: идур.к-та+галактозамин, глюк.к-та+ галактозамин. Сульфат в 4 полож. В тканях животных.

5) Кератансульфат . Галактоза+ацетилглюкозамин. Сульфатирован.

-1 - N-гликозильную связь с аспарагиновыми остатком белка (роговица)

-2- O-гликозильную связь с сериновыми или треониновыми остатками белка (скелет)

6) гепарин – несколько полисах.цепей связаны с общим белком(сер и гли)

2 вида звеньев: глюкозамин+ идуроновая к-та, глюкозамин+глюкуроновая к-та. Глюкозамины содержат С6 сульфатный эфир. В гранулах тучных клеток.

7) гепарансульфат – внеклеточный ПГ(на клет.пов-сти).содержит больше глюкуроновой к-ты.

120. паратгормон:

Повышает уровень Са в крови и снижает уровень фосфатов. Влияние на обмен через вит.Д: в почках паратирин стимулирует образование 1,25 дикидроксикальциферола (Д). но паратирин тормозит реабсорбцию фосфатов(фосфатурия)

Кальцитонин

Вызывает отложение фосфорно-кальциевых солей на коллагеновую матрицу костей. Это приводит к снижению уровня Са и фосфатов в крови.однако вызывает фосфатурию.

Кальцийтриол

Стимулирует всасывание Са и фосфатов в кишечнике

121. Теории минерализации:

1)щелочно-фосфатазная.

Она отщепляет ортофосфат от орг. Фосфорноэфирных.соед.,увеличивая произведение конц. Ионов СА и фосфата.

2)теория Уоделла.

Са-связ.белок,локальное изменение Рн в щелочн.сторону=уменьшение растворимости фосфата

3)теория вспомогательног механизма

МТХ может аккумулировать кальций и нерг.фосфат в форме минер.гранул,расходуя энергию атф.

4)теория эпитаксии

Ориентированный рост кристаллов на пов-сти другого кристалла.

5)Коллагеновая теория минер-ии Глимчера

Рост кристаллов гидроксиапатита на эпитаксической матрице – комплекс коллагена и Са-связ.фосфопротеина

122 ГАГ- линейные отрицат заряженные гетерополисахариды. Обнаруживатся в слизистых секретах, придают им вязкость, смазочные свойства-> межклет вещ-во имеет желеобазный характер.Классификация: 1) гиалуроновая к-та – состот из повторяющихся компонентов, каждый из которых вкл остаток деглюкуроновой к-ты и остаток энацетилгликозамины. 2/3) хондроитин-4-сульфат и х-6-с. Оба состоит из остатка деглюкуроновой к-ты и остатка энацетилгалатозамина, который сульфатирован либо в 4, либо в 6 положении. Х-4-с содержится в хряще, кости, роговице. Х-6-с содержится в коже, сухожилиях, связках, пупочном канатике, сердечных клапанах. 4) дерматан-сульфат. Содержит 2 вида повтор-ся дисахаридных единиц (идуроновая, глюкуроновая) 5) кератан- сульфат-1 и к-с-2. Состоит из повтор дисахаридных элементов: галактоза и энацитилгликозамин. 6) гепарин и гепарин-сульфат. Гепарин- протеогликан в котором несколько полисахаридных цепей связаны с общим белковым ядром. Состоит из 2 видов дисахаридных остатков: энглюкозамин + 90% идуроновая к-та или в 10% глюкуроновая к-та . Гепарин-сульфат- внеклеточный протеогликан, содержит меньше сульфатов, меньше идуроновой к-ты, больше глюкуроновой к-ты. Протеогликаны (ПГ) – высокомолекулярные соединения, состоящие из 5-10% белков и 70-95% ГАГ. Образуют основное вещ-во межклеточного матрикса. Может состоять из 30% сухой массы ткани.

123) Кости-клетки и обызвествл межкл в-во.Остеоциты-не делятся, Составляют основную часть клеток, поддерживают норм состояние костного матрикса и баланса Ca и P в организме.Остеокласты- многоядерные гигантские клетки, осуществляют разрушение или резорбцию костной ткани.Поддерж кальциевый гомеостаз.Остеобласты- образ. костную ткань.Синтез матрикса, участие в обызвествлении, регуляция Ca и Р гомеостаза.

Перестройка костных тканей. Перестройка остеонов всегда связана с разрушением первичных остеонов и одновременным образованием новых остеонов. Разрушение первичных остеонов начинается после образования остеокластов, под влиянием которых пластинки остеонов разрушаются, и на этом месте образуется полость, этот процесс называется резорбция костной ткани. В образовавшейся полости появляются остеобласты и начинается построение новых пластинок. Примыкая друг к другу, остеоны образуют компактное вещество кости. Между остеонами находятся вставочные пластинки, это остатки разрушенных остеонов. Факторы, влияющие на перестройку костной ткани: пьезоэлектрический эффект, отсутствие физической нагрузки, действие ряда витаминов (С, D, А) и гормонов эндокринных желез (паратирин, тирокальцитонин, тироксин, соматотропный гормон).

У молодых здоровых лиц в результате ремоделирования костная масса до 35-40 лет остается постоянной. Затем потеря костной массы у мужчин ежегодно составляет 0,5-2% в год, у женщин - 2-3%, с преимущественным ускорением в течение 5-10 лет после менопаузы.

124) На 97, 5 - 99, 5% состоит из воды, 0,5 - 2,5% приходится на сухой остаток, около 2/3 которого составляют органические вещ-ва и 1/3 минеральные. Общая концентрация минеральных составных частей в слюне ниже, чем в плазме крови, т.е. слюнные железы выделяют гипотоническую жидкость. К минеральным компонентам относятся Ca, К, Nа, Fe, Si, Al, Zn, Cr, Mn, Cu и др. катионы, а так же анионы - хлориды, фосфаты, бикарбонаты, роданиды, йодиды, сульфаты, бромиды и фториды.Содержание Са в слюне 4 - 8 мг/100 мл. Приблизительно в 2 раза ниже, чем в сыворотке крови.

Содержание фосфора в слюне достигает 10 - 25 мг/100мл. В слюне содержание фосфатов в несколько раз выше, чем в сыворотке крови. Содержание фтора в слюне составляет 5,3-15,8 млэкв/л.В смешанной слюне содержится 0,4-0,9 млмоль Мg. Содержание магния с возрастом увеличивается.В слюне обнаружены роданиды (тиоцианаты) - продукты сульфирования цианидов. Количество роданидов увеличено у курильщиков. Принято считать, что слюна концентрирует роданид

У взрослого человека за сутки выделяется 1-2 литра слюны. Скорость секреции составляет 0,2-0,5 мл/мин днем, ночью в 10 раз ниже. В период стимуляции скорость саливации резко возрастает и составляет от 2 до 1 мл/мин. Самая высокая скорость слюноотделения фиксируется в детском возрасте в период 5-8 лет.Гипосаливация и ксеростомия (сухость по рту) обычно приводит к множественному поражению зубов кариесом, а в тяжелых случаях к некрозу эмали.

Согласно современным представлениям, слюна является коллоидной системой, состоящей из мицелл фосфата Са (два типа мицелл).

Сдвиг рН снижает устойчивость мицелл. При подкислении среды уменьшается заряд и устойчивость мицелл. При подщелачивании нарушается мицеллообразование.

Сдвиг рН слюны в кислую сторону снижает минерализующий потенциал слюны и способствует развитию кариеса. Сдвиг в щелочную среду ведет к образованию зубного камня. Повышение концентрации ионов К и Na в слюне может привести к переходу мицелл в изоэлектрическое состояние и снижению их устойчивости в растворе.

Слюна это мутная вязкая жидкость плотность которой составляет 1,002-1,017. Вязкость слюны колеблется в пределах в пределах 1,2-2,4 ед. Вязкость слюны обусловлена наличием гликопротеидов, белков, клеток, при множественном кариесе вязкость слюны, как правило, повышается и может достигать 3. Увеличение вязкости слюны снижает ее очищающие свойства, а так же минерализующую способность.

Как измен кол-во и хим состав слюны при кариесе и парадонтите.

Содержание Са в слюне 4 - 8 мг/100 мл. Приблизительно в 2 раза ниже, чем в сыворотке крови. Больше половины Са 55-60% находится в слюне в ионизированном состоянии, остальной Са связан с белками слюны. С возрастом содержание Ca в слюне повышается, в комбинации с некоторыми органическими компонентами слюны Са (его избыток) может откладываться на зубах, образуя зубной камень который играет особую роль в развитии заболеваний пародонта

Поверхностное натяжение слюны 15-26 Н. При кариесе отмечается увеличение поверхностного натяжения слюны в связи с относительным нарастанием в ней муцинов.

При кариесе концентрация Na в слюне снижается, а вот Cl повышается. При ношении металлических коронок в слюне обнаруживаются ионы серебра, титана, никеля, свинца и др. в виде хлоридов, бикарбонатов, фосфатов и сульфатов.

125 Минерализация. В этом процессе важную роль играют остеобласты и остеокласты. Определяющий фактор- взаимное расположение молекул тропоколлегена со смещением на ¼ длины молекулы. Промежутки м/у молекулами являются центраи минерализации кости, в которых начинается отложение фосфата Са, с последующим образованием апатита. Остеобласты контролируют минерализацию посредством регуляции транспорта Са2+ и фосфата через свои мембраны. Присутствюая в них щелочная фосфатаза высвобождает неорганический фосфат из органических фосфорсодержащих соединений. Освобождающаяся фосфорная к-та реагирует с солям Са с образованием Са3(РО4)2. Гликопротеин остеонекин имеет высокое сродство к коллагену 1 типа и к гидроксиапатиту. Он содержит Са-связывающие домены и способствует осаждению Са и РО43- в присутствии коллагена. В костной ткани постоянно происходят процессы обновления входящих в ее состав вещ-в. Роль. Остеобласты, которые являются мишенями для паратгармона, реагируют на повышение содержания этого гормона в крови снижением синтеза коллагена. Кальцитриол вызывает резорбцию кости, так как остеокласты не имеют к нему рецепторов. Простогландины (А, В, Е1, Е2, F) и некоторые цитокины (эпидерм фактор роста, фактор некроза опухолей) стимулируют резорбцию кости и перестройку костной ткани, воздействуя на остеобласты. Глюкокортикоиды тормозят пролиферацию остеобластов, подавляя в них синтез ДНК, РНК и белков. Определенную роль в регуляции состояния костей играют половые гормоны. В менопаузе у жен постепенно развивается остеопороз. Эстрогены тормозят формирование кости. Кальцитонин действует непосредственно на остеоклаты, которые не имеют к нему рецепторы.

126. Витамин A (ретинол). При недостаточности витамина A возникает гиперороговение слизистых оболочек (гиперкератоз), снижается секреция слюнных желез, зубы "как мелом покрыты", угнетается синтез антител и фагоцитоз, уменьшается иммунитет. Поэтому витамин A широко применяют местно в комплексной терапии эрозивно-язвенных процессов, трещин, воспалительно-дистрофической формы пародонтита, заболеваний, сопровождающихся гиперкератозом (лейкоплакия, красный плоский лишай). При назначении препарата внутрь в дозах, превосходящих суточную потребность, необходимо помнить о возможности развития гипервитаминоза.

Витамин E (токоферол). Является главным питательным веществом-антиоксидантом

Замедляет процесс старения клеток вследствие окисления

Улучшает питание клетокУкрепляет стенки кровеносных сосудов.Предотвращает образование тромбов и способствует их рассасыванию.Укрепляет миокард.Учитывая антиоксидантную активность витамина E, в стоматологической практике его применяют в комплексной терапии воспалительных, эрозивно-язвенных и рубцовых поражений слизистой оболочки полости рта, воспалительно-дистрофических заболеваний пародонта и костной ткани.

127) Коллагены- семейство родственных фибриллярных белков, секретируемых клетками соед ткани. Коллагены- самые распространенные не только межклеточного матрикса, но и организма в целом. В межкл матриксе молекулы коллагена образуют полимеры = фибриллы коллагена. Они обладают высокой прочностью и практически нерастяжимы. Молекулы коллагена состоят из 3 полипептидных цепей = L-цепи. В состав коллаген могут входить 3 одинаковые или разные цепи. Первичная стр-ра L-цепей: каждая 3 аминок-та в полипептидной цепи представлена глицином, около1/4 – пролин, 11% аланин. Полипептдную цепь коллагена можно представить как последовательность триплетов Гли-Х-У, где Х и У могут быть любыми аминок-ми.Придают тканям мех прочность, влияет на пролиферацию, дифференцировку и миграцию различных клеток.Обеспечение архитектоники, взаимодействия между клетками и межклеточным в-вом.

Эластин- представлен гликопротеиновыми молекулами, имеющими в состоянии покоя форму скрученных нитей. Общими для эластина и коллагена являются большое содержание глицина и пролина, наличие оксипролина, хотя последнего в эластине примерно в 10 раз меньше, чем в коллагене. Как и в коллагене, в эластине мало метионина и отсутствуют триптофан и цистеин.В отличие от коллагена в эластине значительно больше валина и ала-нина и меньше глутаминовой кислоты и аргинина. В целом характерной особенностью первичной структуры эластина является слишком малое содержание полярных аминокислотных остатков.Эластические волокна состоят на 90% из эластина.Функции- определение архитектоники ткани, обеспечение способности ткани к обратимой деформации.

128. Эмаль-ткань, покрывающ. Коронку зуба, самая твердая в организме.Толщина 1,5-1,7 мм., на боковых пов-тях она тоньше и к шейке сходит на нет.Основным структурным компонентом явл. Эмалевые призмы диаметром 4-6 мкм. Тесно прилежащие друг к другу и склеенные между собой межпризматическим в-вом.Призмы расположены перпендик-но к поверхности зуба и по длине превышают толщину слоя эмали, т.к имеют извилистое S-образное направление.

Фибриллярный матрикс образован неколлагеновыми белками (амелогенины, энамелины, фосфопротеиды), но в полностью сформировавшейся эмали белки присутствуют лишь в небольших кол-вах.Основа эмалевой призмы – трехмерная сетка из белка,связывающего Са.

Мин.вещ-ва: гидроксиапатит 75%, карбоксиапатит 12%, хлорапатит 4,4%, СаСО3 1,3%, MgСО3 1,6%,

Фторапатит 0,7%. В нар.слое эмали сод-ся много свинца, цинка, железа, натрия, магния, карбоната; стронций, медь, алюминий, калий.

Межпризменное в-во состоит из таких же кристаллов, как и сама призма, но они отличаются пространственной ориентацией.

Минерализация протекает аналогично минерализации кости.В процессе участвуют не только белки, но и углеводы и сложные жиры

129) Коллаген в эмали обнаружен в виде следов.

Сравнительно недавно в структуре эмали доказано наличие гликопротеидов, также небольшое кол-во Са-связывающего белка (гаммакарбоксиглутаматный белок), этот белок с достаточно высокой емкостью и склонностью к агрегации до тетрамеров в нейтральной среде. Содержание белка в эмали сост. 1,3%.

Из белков дентина основным является коллаген, который содержит типичный для коллагена кости (коллаген 1-го типа) аминокислотный состав.

Коллаген дентина связан с кислыми протеогликанами содержащими хондроитинсульфаты, они в свою очередь содержат Са. Обнаружены здесь так же различные гликопротеиды: сиалогликопротеид, группа белков - анилины, фосфопротеины. Углеводный компонент органического матрикса дентина представлен в основном гликогеном. Одновременно здесь есть гетероолигосахариды гликопротеидов, хондроитинсульфаты, а так же галактоза и глюкоза, связанные с коллагеном.

Органический матрикс цемента сходен с матриксом трубчатой кости. Преобладающим здесь являются коллагеновые белки первого типа. В то же время есть минорные коллагены. Матрикс цемента содержит и неколлагеновые белки: протеогликаны, глико- и фосфопротеиды, Са-связывающий белок.

Основными белками внеклеточного матрикса пульпы являются коллагеновые белки, формирующиеся в коллагеновые волокна. Эластические волокна в пульпе не найдены. Пульпа корневых каналов отличается от коронковой пульпы большим содержанием пучков коллагеновых волокон.

Периодонт - это соединительнотканная связка, удерживающая корень зуба в зубной альвеоле. Основными компонентами межклеточного вещества здесь явл. коллагеновые волокна. Они натянуты между цементом корня зуба и костными стенками зубной альвеолы. Среди пучков коллагеновых волокон периодонта обнаружены необычные волокна по химическому составу занимающие промежуточное положение между коллагеновыми и эластическими - окситалановые. Между пучками коллагеновых волокон встречаются эластические волокна обычно вблизи сосудов и нервов.

130 Роль витаминов: А(ретонол) – цикл ненасыщ одноатомный спирт, содержится в живот продуктах ( печень, яичный желток, молоч продукты, томат). Сут потреб 1-2,5 мг. При авитоинозе у детей набюдается остановка роста костей, прикращение роста костей черепа приводит к повреждению тканей ЦНС и к повышению давления спинномозговой деятельности.

Роль витамин К- жирорастворим. Источники: растительные и жив продукты(капуста, фрукты, печень), синтезируется микрофлорой кишечника. Суточная потребность 1-2 мг. Биол функция: участвует в активации факторов свертывания крови: 2,7,9,11 Вит Д – кальциферол антирахитический. Сут потреб 12-25 мкг. При недостатке – рахит, харак-ся нарушением кальцификации растущих костей, наблюб деформация костей с характерными изменениями ( Х или О образная форма ног, « четки» на ребрах, деформация кстей черепа, задержка прорез зубов). Вит С – аскорбин к-та. Сут потреб 50-75 мг. При недостатке – цинга, сопровождается разрыхлеием десен, расшатзубов, нарушение целостности капилляров – анемия, отеки, боль в суставах.

131. 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных.

1.Протекает на рибосомах, синтезируется молекула-предшественник: препроколлаген.

2.С помощью сигнального пептида "пре" транспорт молекулы в канальцы эндоплазматической сети. Здесь отщепляется "пре" - образуется "проколлаген".

3.Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ).

При недостатке витамина "С" - аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления.

4.Посттрасляционная модификация - гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина.

5.Заключительный внутриклеточный этап - идет формирование тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности - аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации.

6.Секретируется тропоколлаген во внеклеточную среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность.

7.Ковалентное "сшивание" молекулы тропоколлагена по принципу "конец-в-конец" с образованием нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь.

Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном.

Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена).

8.Ассоциация молекул нерастворимого коллагена по принципу "бок-в-бок". Ассоциация фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи.

132. КОЛЛАГЕНОЗ.Заболевание, характеризующееся воспалительными изменениями в соединительной ткани, которые фактически могут развиваться в любой системе организма. Ранее эти заболевания назывались коллагенозом (к ним относятся: дерматомиозит, системная и дисковидная красная волчанка, кольцевидная склеродермия, узелковый полиартрит и ревматоидный артрит,цинга.

Синтез коллагена — сложный ферментативный многостадийный процесс, который должен быть обеспечен достаточным количеством витаминов и минеральных элементов. Синтез протекает в фибробласте и ряд стадий вне фибробласта. Важный момент в синтезе — реакции гидроксилирования, которые открывают путь дальнейшим модификациям, необходимым для созревания коллагена. Катализируют реакции гидроксилирования специфические ферменты. Так, образование 4-оксипролина катализирует пролингидроксилаза, в активном центре которой находится железо. Фермент активен в том случае, если железо находится в двухвалентной форме, что обеспечивается аскорбиновой кислотой (витамин С). Дефицит аскорбиновой кислоты нарушает процесс гидроксилирования, что влияет на дальнейшие стадии синтеза коллагена- гликозилирование, отщепление N- и С-концевых пептидов и др. В результате синтезируется аномальный коллаген, более рыхлый. Эти изменения лежат в основе развития цинги.Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена).

Мукополисахаридозы - группа метаболических заболеваний соединительной ткани, связанных с нарушением обмена кислых гликозаминогликанов (GAG, мукополисахаридов), вызванных недостаточностью лизосомных ферментов обмена гликозаминогликанов. Заболевания связаны с наследственными аномалиями обмена, проявляются в виде "болезни накопления" и приводят к различным дефектам костной, хрящевой, соединительной тканей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]