
- •1.Архитектура операционных систем
- •1.1Общие вопросы архитектуры операционных систем
- •1.2Архитектура Windows
- •1.2.1История возникновения Windows
- •1.2.2Архитектура ос Windows
- •1.2.3История возникновения ос Linux
- •1.2.4Архитектура Linux
- •1.2.5Интерфейсы системы unix
- •1.2.6Файловая система unix
- •1.2.7Аутентификация в unix
- •1.2.8Сценарии командной оболочки unix
- •1.3Операционная система qnx
- •1.3.1 Архитектура qnx
- •1.4Выводы
- •1.5Вопросы для самоконтроля
- •2.Типы и алгоритмы работы с оперативной памятью
- •2.1Общие принципы функционирования подсистемы памяти в ос
- •2.1.1Обобщённые принципы управления памятью
- •2.1.2Однозадачная система без подкачки на диск
- •2.1.3Многозадачность с фиксированными разделами
- •2.1.4Подкачка
- •2.1.5Управление памятью с помощью битовых массивов
- •2.1.6Управление памятью с помощью связанных списков
- •2.1.7Виртуальная память
- •2.1.8Многоуровневые таблицы страниц
- •2.1.9Алгоритмы замещения страниц
- •2.2Виртуальная память ос Windows
- •2.2.1Архитектура памяти в ос Windows
- •2.2.2Работа с виртуальной памятью в ос Windows
- •2.2.3Использование виртуальной памяти в приложениях
- •2.3Пример организации страничной памяти на примере linux
- •2.3.1Страничная организация памяти в Linux
- •2.3.2Права доступа к области памяти
- •2.3.3Работа с областями памяти в Linux
- •3.Процессы и потоки
- •3.1Процессы
- •3.1.1Модель процесса
- •3.1.2Создание процесса
- •3.1.3Завершение процесса
- •3.1.4Состояния процессов
- •3.1.5Реализация процессов
- •3.2Потоки
- •3.2.1Реализация потоков
- •3.2.2Реализация потоков на уровне ядра
- •3.2.3Смешанная реализация
- •3.2.4 Метод управления «Активация планировщика»
- •3.2.5Всплывающие потоки
- •3.3Межпроцессное взаимодействие
- •3.3.1Состояние состязания
- •3.3.2Критические секции (Критические области)
- •3.3.3Взаимное исключение с активным ожиданием
- •3.3.4Примитивы межпроцессного взаимодействия
- •3.4Семафоры
- •3.5Мьютексы
- •3.6Организация многопоточной обработки в среде Windows
- •3.6.1Объекты ядра Windows
- •3.6.2Потоки Windows
- •3.6.3Синхронизация потоков в Windows
- •3.6.4Синхронизация потоков с помощью объектов ядра
- •3.6.5Сравнение объектов, используемых для синхронизации потоков
- •3.7Организация процессов и потоков в Linux
- •3.7.1Среда окружения в Linux
- •3.7.2Создание нового процесса. Системный вызов exec.
- •3.7.3Потоки unix. Функции потоков стандарта posix.
- •3.8Синхронизация потоков в unix
- •3.8.1Мьютексы
- •3.8.2Семафоры
- •0,0,0, //Ожидать обнуления семафора
- •0,1,0 // Затем увеличить значение семафора на 1};
- •0,1, 0 // Увеличитьзначение семафора на 1};
3.7.3Потоки unix. Функции потоков стандарта posix.
В стандарте POSIX не указывается, должны ли потоки реализовываться в пространстве ядра или в пространстве пользователя. Когда используется системная реализация потоков, они являются настоящими системными вызовами. При использовании потоков на уровне пользователя они полностью реализуются в динамической библиотеке в пространстве пользователя.
Таблица 3.3. Функции потоков стандарта POSIX
Вызов |
Описание |
pthread_create |
Создать новый поток в адресном пространстве вызывающего процесса |
pthread_exit |
Завершать вызывающий процесс |
pthread_join |
Подождать, пока не завершиться процесс |
pthread_mutex_init |
Создать новый мьютекс |
pthread_ mutex_destroy |
Уничтожить мьютекс |
pthread_ mutex_lock |
Заблокировать мьютекс |
pthread_ mutex_unlock |
Разблокировать мьютекс |
pthread_ cond _init |
Создать условную переменную |
pthread_cond_destroy |
Уничтожить условную переменную |
pthread_cond_wait |
Ждать условную переменную |
pthread_cond_signal |
Разблокировать один поток, ждущий условную переменную |
Обращение к первому системному вызову производится следующим образом:
err= pthread_create(&tid, attr, function, arg);
Вызов создает новый поток, в котором работает функция function, а arg передается программе function в качестве параметра. Идентификатор нового потока хранится в памяти по адресу, в котором хранится первый поток. С помощью attr можно задавать для нового потока новые атрибуты, такие как приоритеты планирования. После успешного выполнения в адресном пространстве пользователя появляется на один поток больше.
Заголовок функции потока имеет следующий вид:
void * func_name(void * arg)
Функция pthread_exit() представляет собой потоковый аналог функции _exit(). Аргумент функции pthread_exit(), значение типа void *, становится возвращаемым значением функции потока. Как (и кому?) функция потока может вернуть значение, если она не вызывается из программы явным образом? Для того, чтобы получить значение, возвращенное функцией потока, нужно воспользоваться функцией pthread_join(3). У этой функции два параметра. Первый параметр pthread_join(), – это идентификатор потока, второй параметр имеет тип «указатель на нетипизированный указатель». В этом параметре функция pthread_join() возвращает значение, возвращенное функцией потока. Конечно, в многопоточном приложении есть и более простые способы организовать передачу данных между потоками. Основная задача функции pthread_join() заключается, однако, в синхронизации потоков. Вызов функции pthread_join() приостанавливает выполнение вызвавшего ее потока до тех пор, пока поток, чей идентификатор передан функции в качестве аргумента, не завершит свою работу. Если в момент вызова pthread_join() ожидаемый поток уже завершился, функция вернет управление немедленно. Функцию pthread_join() можно рассматривать как эквивалент waitpid(2) для потоков. Эта функция позволяет вызвавшему ее потоку дождаться завершения работы другого потока. Попытка выполнить более одного вызова pthread_join() (из разных потоков) для одного и того же потока приведет к ошибке.