Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Engel - Разностные уравнения в экономике.rtf
Скачиваний:
9
Добавлен:
13.11.2019
Размер:
867.22 Кб
Скачать

Продуктивные модели Леонтьева

Матрица , все элементы которой неотрицательны, называется продуктивной, если для любого вектора с неотрицательными компонентами существует решение уравнения (27) – вектор , все элементы которого неотрицательны.

Для уравнения типа (27) разработана соответствующая математическая теория исследования решения и его особенностей. Укажем некоторые ее основные моменты. Приведем без доказательства теорему, позволяющую устанавливать продуктивность матрицы.

Теорема. Если для матрицы с неотрицательными элементами и некоторого вектора с неотрицательными компонентами уравнения (27) имеет решение с неотрицательными компонентами, то матрица продуктивна.

Иными словами, достаточно установить наличие положительного решения системы (27) хотя бы для одного положительного вектора , чтобы матрица была продуктивной. Перепишем систему (27) с использованием единичной матрицы в виде

. (28)

Если существует обратная матрица , то существует и единственное решение уравнения (28)

. (29)

Матрица называется матрицей полных затрат.

Существует несколько критериев продуктивности матрицы .

Первый критерий продуктивности. Матрица продуктивна тогда и только тогда, когда матрица существует и ее элементы неотрицательны.

Второй критерий продуктивности. Матрица с неотрицательными элементами продуктивна, если сумма элементов по любому ее столбцу (строке) не превышает единицы:

, (30)

причем хотя бы для одного столбца (строки) эта сумма строго меньше единицы.

Рассмотрим применение модели Леонтьева на несложном примере.

Пример 1. Таблица 1 содержит данные баланса трех отраслей промышленности за некоторый период. Требуется найти объем валового выпуска продукции, если конечное потребление по отраслям увеличить соответственно до 60, 70 и 30.

Таблица 1.

№ п/п

Отрасль

Потребление

Конечный продукт

Валовой выпуск

1

2

3

1

Добыча и переработка углеводородов

5

35

20

40

100

2

Энергетика

10

10

20

60

100

3

Машиностроение

20

10

10

10

50

Решение. Выпишем векторы валового выпуска и конечного потребления и матрицу коэффициентов прямых затрат. Согласно формулам (24) и (26),

Матрица удовлетворяет обоим критериям продуктивности. В случае заданного увеличения конечного потребления новый вектор конечного продукта будет иметь вид

Требуется найти новый вектор валового выпуска , удовлетворяющий соотношениям баланса в предположении, что матрица не изменяется. В таком случае компоненты , , неизвестного вектора находятся из системы уравнений, которая, согласно (25), имеет в данном случае вид

В матричной форме эта система выглядит следующим образом:

, или ,

где матрица имеет вид

Отсюда расчитывается новый вектор как решение этого уравнения баланса:

.

Найдем обратную матрицу (матрицу полных затрат) , с использованием формулы

(31)

Определитель матрицы ,

так что обратная матрица и решение указанной системы уравнений существуют. Вычисление обратной матрицы дается с точностью до третьего знака:

.

Заметим, что найденная обратная матрица удовлетворяет первому критерию продуктивности матрицы .

Теперь можно вычислить вектор валового выпуска :

.

Таким образом, для того чтобы обеспечить заданное увеличение компонент вектора конечного продукта, необходимо увеличить соответствующие валовые выпуски: добычу и переработку углеводородов на , уровень энергетики – на и выпуск машиностроения – на по сравнению с исходными величинами, указанными в табл. 1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]