
- •Робоча програма навчальної дисципліни
- •6.030503 «Міжнародна економіка»
- •Опис навчальної дисципліни
- •Мета та завдання навчальної дисципліни
- •Програма навчальної дисципліни Змістовий модуль 1. Задачі лінійного програмування
- •Змістовий модуль 2. Задачі нелінійної оптимізації.
- •5. Теми та план лекцій Денна форма навчання
- •6. Теми практичних та лабораторних занять Денна форма навчання
- •Заочна форма навчання
- •7. Самостійна робота Денна форма навчання
- •Заочна форма навчання
- •8. Індивідуальні завдання
- •9. Методи навчання
- •10. Методи контролю
- •11. Розподіл балів, які отримують студенти Денна форма навчання
- •Заочна форма навчання
- •12. Методичне забезпечення
- •13. Рекомендована література Базова
- •Допоміжна
- •14. Інформаційні ресурси
5. Теми та план лекцій Денна форма навчання
№ з/п |
Назва теми |
Кількість годин |
1 |
Лекція 1. Економічна та математична постановка оптимізаційних задач
|
2 |
2 |
Лекція 2. Розв’язання балансових моделей та задач лінійного програмування.
|
2 |
3 |
Лекція 3. Основні теореми та властивості задач ЛП.
Основні теореми та властивості задачі ЛП. |
2 |
4 |
Лекція 4 . Графічний метод розв’язування задач ЛП.
|
2 |
5 |
Лекція 5. Розв’язання задач ЛП симплекс-методом
|
2 |
6 |
Лекція 6. . Розв’язання задач ЛП симплекс-методом (продовження)
|
2 |
7 |
Лекція .7. Транспортна задача.
транспортної задачі (ТЗ).
|
2 |
8 |
Лекція 8. Транспортна задача (продовження)
|
2 |
9 |
Лекція 9. Транспортна задача (продовження)
10. Приклад вирішення задачі типу ТЗ. |
2 |
10 |
Лекція 10. Двоїста задача лінійного програмування.
Взаємозв’язок розв’язків прямої та двоїстої задач. |
2 |
11 |
Лекція 11. Задача цілочислового програмування.
3. Графічний метод розв’язання задачі цілочислового програмування. |
2 |
12 |
Лекція 12. Параметричне програмування.
3. Задачі з параметром у правій частині системи обмежень. |
2 |
13 |
Лекція 13. Матричні ігри
Задачі в чистих стратегіях. 3. Ігри в мішаних стратегіях.
|
2 |
14 |
Лекція 14. Матричні ігри (продовження). 4. Графічний метод розв’язання задач теорії ігор. 5. Зведення задач теорії ігор до задач ЛП. 6. Зведення задачі ЛП до матричної гри. |
2 |
15 |
Лекція 15. Задача дробово-лінійного програмування.
4.Графічне розв’язання задачі дробово-лінійного програмування
|
2 |
16 |
Лекція 16. Задачі нелінійного програмування
|
2 |
17 |
Лекція 17. Основні поняття теорії варіаційного числення.
|
2 |
18 |
Лекція 18. Основні поняття теорії варіаційного числення (продовження).
9. Система диференціальних рівнянь екстремалей функціоналу, що залежить від кількох функцій (система рівнянь Ейлера-Лагранжа). |
2 |
Заочна форма навчання
№ з/п |
Назва теми |
Кількість годин |
1 |
Лекція 1. Основні теореми та властивості задач ЛП
|
2 |
2 |
Лекція 2. Задачі нелінійного програмування
|
2 |
3 |
Лекція 3. Матричні ігри.
3. Ігри в мішаних стратегіях. 4.Зведення задач теорії ігор до задач ЛП. |
2 |