Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
8 ЦНС Занятие 3 Основные рефлекторные центры .doc
Скачиваний:
29
Добавлен:
11.11.2019
Размер:
1.36 Mб
Скачать

З анятие 3. Частная физиология ЦНС. Рефлекторные центры ЦНС.

Вопросы для самоподготовки.

  1. Физиологические основы функциональной активности спинного мозга.

  2. Физиологические основы функциональной активности продолговатого мозга

  3. Физиологические основы функциональной активности среднего мозга

  4. Физиологические основы функциональной активности промежуточного мозга

  5. Физиологические основы функциональной активности мозжечка.

  6. Базальные ганглии.

Базовая информация.

В созревшем состоянии головной и спинной мозг, а также весь аппарат периферических нервов с рецепторными органами представляют собой целостную систему, которая анатомически и функционально делится на большое число звеньев.

Центральная нервная система (ЦНС) включает в себя спинной и головной мозг (Рис.1).

Рис.1. Основные анатомические структуры головного мозга.

Спинной мозг.

Спинной мозг является наиболее древним и примитивным отделом центральной нервной системы.

Х арактерной чертой организации спинного мозга является периодичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде задних корешков (Рис.2). Морфологической границы между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональным. Каждый сегмент через свои корешки иннервирует три метамера тела собственный, половину вышележащего и половину нижележащего, а каждый метамер тела получает иннервацию от трех сегментов спинного мозга. Такое устройство гарантирует осуществление функций спинного мозга при возможных его перерывах и других поражениях.

◄Рис.2. Поперечный разрез спинного мозга.

Распределение функций входящих и выходящих волокон спинного мозга подчиняется определенному закону: все чувствительные (афферентные) волокна входят в спинной мозг через его задние корешки, а двигательные и вегетативные (эфферентные) выходят через передние корешки. Этот закон известен как закон Белла-Мажанди.

Выдающийся шотландский анатом и физиолог Белл и французский исследователь Мажанди установили, что при односторонней перерезке передних корешков спинного мозга отмечается паралич конечностей этой же стороны, чувствительность же сохраняется полностью. Перерезка задних корешков приводит к утрате чувствительности, двигательная функция при этом сохраняется. Таким образом, было показано, что афферентные импульсы поступают в спинной мозг через задние корешки (чувствительные), эфферентные импульсы выходят через передние корешки (двигательные). Эта закономерность известна как закон Белла-Мажанди.

В задних корешках волокон гораздо больше, чем в передних (их соотношение у человека примерно 5:1) т. е. при большом разнообразии поступающей информации организм использует незначительное количество исполнительных приборов. По задним корешкам в спинной мозг поступают импульсы от рецепторов скелетных мышц, сухожилий, кожи, сосудов, внутренних органов. Передние корешки содержат волокна к скелетным мышцам и вегетативным ганглиям.

Задние корешки образованы волокнами одного из отростков афферентных нейронов, тела которых расположены вне центральной нервной системы – в межпозвоночных ганглиях, а волокна другого отростка связаны с рецептором. Общее число афферентных волокон у человека достигает примерно 1 млн. Они различаются по диаметру. Наиболее толстые идут от рецепторов мышц и сухожилий, средние по толщине – от тактильных рецепторов кожи, от части мышечных рецепторов и от рецепторов внутренних органов (мочевого пузыря, желудка, кишечника и др.), наиболее тонкие миелинизированные и немиелинизированные волокна – от болевых рецепторов и терморецепторов. Одна часть афферентных волокон заканчивается на нейронах спинного мозга, другая часть направляется к нейронам продолговатого мозга, образуя спинно-бульбарный путь.

Передние корешки состоят из отростков мотонейронов передних рогов спинного мозга и нейронов боковых рогов. Волокна первых направляются к скелетной мускулатуре, а волокна вторых переключаются в вегетативных ганглиях на другие нейроны и иннервируют внутренние органы.

Внутри спинной мозг состоит из серого и белого вещества. Серое вещество заложено внутри и со всех сторон окружено белым. В каждой из половин спинного мозга оно образует два неправильной формы вертикальных тяжа с передними и задними выступами – столбами, соединенных перемычкой - центральным промежуточным веществом, в середине которого заложен центральный канал, проходящий вдоль спинного мозга и содержащий спинномозговую жидкость. В грудном и верхнем поясничном отделах имеются также боковые выступы серого вещества. Таким образом, в спинном мозге различают три парных столба серого вещества: передний, боковой и задний, которые на поперечном разрезе спинного мозга носят название переднего, бокового и заднего рогов.

Передний рог имеет округлую или четырехугольную форму и содержит клетки, дающие начало передним (двигательным) корешкам спинного мозга.

Задний рог уже и длиннее и включает клетки, к которым подходят чувствительные волокна задних корешков.

Боковой рог образует небольшой треугольной формы выступ, состоящий из клеток, относящихся к вегетативной части нервной системы.

Белое вещество спинного мозга составляет передний, боковой и задний канатики и образовано преимущественно продольно идущими нервными волокнами, объединенными в пучки – проводящие пути.

Среди них выделяют три основных вида:

  • волокна, соединяющие участки спинного мозга на различных уровнях;

  • двигательные (нисходящие) волокна, идущие из головного мозга в спинной на соединение с клетками, дающими начало передним двигательным корешкам;

  • чувствительные (восходящие) волокна, которые частично являются продолжением волокон задних корешков, частично отростками клеток спинного мозга и восходят кверху к головному мозгу.

От спинного мозга, образуясь из передних и задних корешков, отходит 31 пара смешанных спинномозговых нервов: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и 1 пара копчиковых. Участок спинного мозга, соответствующий отхождению пары спинномозговых нерввов, называют сегментом спинного мозга. В спинном мозге выделяют 31 сегмент.

Спинной мозг выполняет две функции: рефлекторную и проводниковую.

Важную роль в развитии представлений о рефлекторной деятельности спинного мозга сыграли открытия и обобщения английского физиолога, лауреата Нобелевской премии Чарлза Шерринггона.

Рефлекторные центры спинного мозга. Объем функций, осуществляемых спинным мозгом, чрезвычайно велик. В шейном отделе спинного мозга находятся центр диафрагмального нерва и центр сужения зрачка, в шейном и грудном отделах - центры мышц верхних конечностей, мышц груди, спины и живота, в поясничном отделе - центры мышц нижних конечностей, в крестцовом отделе - центры мочеиспускания, дефекации и половой деятельности, в боковых рогах грудного и поясничного отделов спинного мозга - центры потоотделения и спинальные сосудодвигательные центры.

В естественных условиях эти рефлексы всегда испытывают влияние высших отделов головного мозга. Степень проявления рефлексов зависит от того, сохраняются ли связи структур спинного мозга со структурами головного мозга. После децеребрации (удаления головного мозга) или спинализации (отделения спинного мозга от головного посредством перерезки) исчезают многие сложные формы активности, создаваемые спинным мозгом. При этом определенное значение принадлежит уровню организации подопытного животного. Например, спинальная лягушка, может сидеть и вырываться, когда ее схватывают, собака же сама не может ни стоять, ни ходить. Причина этого в разобщении спинного мозга и вышележащих структур нарушает. При этом, в частности, исчезают периодические разряды дыхательных мышц, обеспечивающие дыхательные движения, пропадают тонические разряды симпатических нейронов, поддерживающих сосудистый тонус и соответственно артериальное давление.

В зависимости от числа нейронов, участвующих в проведении возбуждения, рефлекторные дуги спинного мозга делятся на моносинаптические и полисинаптические. За исключением моносинаптических рефлексов растяжения рефлекторные дуги всех остальных спиномозговых рефлексов являются полисинаптическими.

К числу рефлексов спинного мозга относятся защитные рефлексы, рефлексы на растяжение, мышц-антагонистов, висцеромоторные, вегетативные рефлексы. Эта классификация весьма условна, она указывает только на многообразие рефлекторных ответов. Даже у спинального животного трудно встретить рефлексы, которые относились бы только к одной из названных групп.

Защитные рефлексы запускаются, как правило, с рецепторов кожи, хотя характер ответной реакции сильно зависит от силы и вида раздражителя. Чаще всего конечная реакция выглядит в виде усиления сокращения мышц сгибателей.

Рефлексы растяжения проявляются укорочением мышцы в ответ на ее растяжение.

Основными рецепторами в этом случае служат нервно-мышечные веретена, афферентным звеном чувствительные волокна соматических нервов и дорсальных корешков спинного мозга. Эти рефлекторные дуги чаще всего замыкаются в спинном мозге. Начало и конец рефлекторной дуги связаны с мышцей. Рефлексы наиболее выражены в мышцах-разгибателях. Для того. чтобы организм мог противостоять силе земного притяжения, эти мышцы должны находиться в состоянии тонического напряжения. Физиологическое значение этих рефлексов состоит в том, что они участвуют в сохранении статики и положения тела, регулируя степень сокращения мышцы в соответствии с падающими на нее раздражениями.

Рефлексы мышц-антагонистов лежат в основе локомоторных актов и характеризуются тем, что при возбуждении мотонейронов сгибателей одновременно происходит торможение мотонейронов мышц-разгибателей. При этом в конечности другой стороны наблюдаются обратные явления. В целом это создает правильное чередование противоположных по функциональному значению мышечных сокращений. Механизм, обусловливающий такое чередование активности различных двигательных ядер, например при ходьбе, локализуется в интернейронном аппарате спинного мозга. Вместе с тем для его активации необходимо поступление тонического нисходящего сигнала из двигательных центров головного мозга.

Висцеромоторные рефлексы возникают при возбуждении афферентных волокон внутренних органов и характеризуются появлением двигательных реакций мышц грудной и брюшной стенки, мышц-разгибателей спины. Возникновение этих рефлексов связано с существованием конвергенции висцеральных и соматических аффферентных волокон к одним и тем же интернейронам спинного мозга.

Вегетативные рефлексы заключаются, во-первых, в появлении полисинаптических разрядов в преганглионарных симпатических волокнах в ответ на возбуждение симпатических и соматических чувствительных клеток, во-вторых, в возникновении рефлекторных реакций парасимпатических нейронов в ответ на раздражение чувствительных путей.

Наряду с выполнением собственных рефлекторных реакций нейронные структуры спинного мозга служат аппаратом для реализации большого числа сложных процессов, осуществляемых различными отделами головного мозга.

Проводниковая функция спинного мозга. Через спинной мозг проходят восходящие и нисходящие нервные пути.

Восходящие нервные пути передают информацию от тактильных, болевых, температурных рецепторов кожи и от проприорецепторов мышц через нейроны спинного мозга в вышележащие отделы центральной нервной системы, к мозжечку и горе головного мозга.

Нисходящие нервные пути (пирамидный и экстрапирамидный) связывают кору головного мозга, подкорковые ядра и образования ствола мозга с мотонейронами спинного мозга. Они обеспечивают влияние высших отделов ЦНС на деятельность скелетных мышц.

Продолговатый мозг и мост

Н епосредственным продолже-нием спинного мозга у всех позвоночных животных и человека является продолговатый мозг (Рис.1, Рис. 3).

Функции продолговатого мозга были изучены на бульбарных животных, у которых поперечным разрезом продолговатый мозг отделен от среднего. Следовательно, жизнь бульбарных животных осуществляется за счет деятельности спинного и продолговатого мозга. У таких животных отсутствуют произвольные движения, отмечается потеря всех видов чувствительности, нарушается регуляция температуры тела (теплокровное животное превращается в холоднокровное). У бульбарных животных сохраняются рефлекторные реакции организма и осуществляется регуляция функций внутренних органов.

В продолговатом мозге по

Рис.3. Средне-нижние отделы головного мозга

сравнению со спинным мозгом нет четкого сегментарного распределения серого и белого вещества. Скопление нервных клеток приводит к образованию ядер, являющихся центрами более или менее сложных рефлексов. Из 12 пар черепных нервов, связывающих головной мозг с периферией организма - его рецепторами и эффекторами, восемь пар (V – ХII) берут свое начало в заднем мозге. В продолговатом мозгу и мосте расположены ядра следующих черепных нервов:

пара V черепных нервов – тройничный нерв, имеет двигательное и чувствительное ядра. Двигательное ядро расположено в мосту, иннервирует жевательные мышцы и вызывает движения нижней челюсти а также напрягает мягкое небо и барабанную перепонку. Чувствительные ядра (среднемозговое, мостовое, спинальное) получают от кожи, слизистых оболочек, органов лица и головы тактильную, температурную, висцеральную, проприоцептивную, болевую импульсацию, входят в проводниковый отдел соответствующих анализаторов и участвуют в различных рефлексах (например, жевательном, глотательном, чихательном).

пара VI черепных нервов – отводящий нерв; ядро отводящего нерва расположено в мосту. Иннервирует наружную прямую мышцу глаза, вызывает поворот его кнаружи.

пара VII черепных нервов – лицевой нерв; ядра лицевого нерва находятся в мосту. Двигательное ядро вызывает сокращения мимической и вспомогательной жевательной мускулатуры, регулирует передачу звуковых колебаний в среднем ухе в результате сокращения стременной мышцы. Чувствительное ядро одиночного пути, иннервируя вкусовые луковицы передних 2/3 языка, анализирует вкусовую чувствительность, участвует в моторных и секреторных пищеварительных рефлексах. Верхнее слюноотделительное (парасимпатическое) ядро стимулирует выделение секретов подъязычной, подчелюстной слюнных и слезной желез.

пара VIII черепных нервовпреддверно-улитковый нерв; его чувствительные ядра расположены в продолговатом мозге. Вестибулярные ядра, иннервируя рецепторы вестибулярного аппарата, участвуют в регуляции позы и равновесия тела (статические и статокинетические рефлексы), в вестибулоглазных и вестибуловегетативных рефлексах, входят в проводниковый отдел вестибулярного анализатора. Улитковые ядра, иннервирующие слуховые рецепторы, участвуют в слуховом ориентировочном рефлексе, входят в проводниковый отдел слухового анализатора.

пара IX — языкоглоточный нерв; ядра языкоглоточного нерва расположены в продолговатом мозге. Двойное (двигательное) ядро вызывает поднимание глотки и гортани, опускание мягкого неба и надгортанника при глотательном рефлексе. Чувствительное ядро одиночного пути получает вкусовую, тактильную, температурную, болевую и интероцептивную чувствительность от слизистой оболочки глотки, задней трети языка, барабанной полости и каротидного тельца, входит в состав соответствующих анализаторов, участвует в рефлексах жевания, глотания, в секреторных и моторных пищеварительных рефлексах, в сосудистых и сердечных рефлексах (из каротидного тельца). Нижнее слюноотделительное (парасимпатическое) ядро стимулирует секрецию околоушной слюнной железы.

пара X — блуждающий нерв; ядра блуждающего нерва расположены в продолговатом мозге. Двойное (двигательное) ядро, иннервируя мышцы неба, глотки, гортани, участвует в рефлекса глотания, рвоты, чиханья, кашля, в формировании голоса. Чувствительное ядро одиночного пути, иннервируя слизистую оболочку неба, корня языка, дыхательных путей, аортальное тельце, органы шеи, грудной, брюшной полостей, участвует в качестве афферентного звена в глотательном, жевательном дыхательных, висцеральных рефлексах. Оно входит в проводниковый отдел интероцептивного, вкусового, тактильного, температурного и болевого анализаторов. Заднее (парасимпатическое) ядро, иннервируя сердце, гладкие мышцы и железы органов шеи грудной и брюшной полостей, участвует сердечных, легочных, бронхиальных, пищи верительных рефлексах.

пара XI — добавочный нерв; двигательное ядро добавочного нерв расположено в продолговатом и спинном мозге. Иннервируя грудино-ключично-сосцевидную и трапециевидную мышцы, оно вызывает наклон головы набок с поворотом лица в противоположную сторону, поднимание плечевого пояса вверх приведение лопаток к позвоночнику.

пара XII — подъязычный нерв; двигательное ядро подъязычного нерва расположено в продолговатом мозге; иннервируя мышцы языка, вызывает его движение в рефлексах жевания, сосания, глотания, в осуществлении речи.

Таким образом, с участием ядер черепных нервов реализуется сенсорная и рефлекторная (соматическая и вегетативная) функции ствола мозга.

Сенсорные функции. Продолговатый мозг обеспечивает ряд сенсорных функций:

  • рецепцию кожной чувствительности лица — в сенсорном ядре тройничного нерва;

  • первичный анализ рецепции вкуса — в ядре языкоглоточного нерва;

  • рецепцию слуховых раздражений — в ядре улиткового нерва;

  • рецепцию вестибулярных раздражений — в верхнем вестибулярном ядре.

В задневерхних отделах продолговатого мозга проходят пути кожной, глубокой, висцеральной чувствительности, часть из которых переключается здесь на второй нейрон (тонкое и клиновидное ядра). На уровне продолговатого мозга перечисленные сенсорные функции реализуют первичный анализ силы и качества раздражения, далее обработанная информация передается в подкорковые структуры для определения биологической значимости данного раздражения.

Рефлекторные функции продолговатого мозга. В продолговатом мозге находятся центры как относительно простых, так и более сложных рефлексов. За счет продолговатого мозга осуществляются:

  • защитные рефлексы (мигание, слезоотделение, чиханье, кашлевой и рефлекс акта рвоты);

Эти рефлексы реализуются благодаря тому, что информация о раздражении рецепторов слизистой оболочки глаза, полости рта, гортани, носоглотки через чувствительные ветви тройничного и языкоглоточного нервов попадает в ядра продолговатого мозга. Отсюда идет команда к двигательным ядрам тройничного, блуждающего, лицевого, языкоглоточного, добавочного или подъязычного нервов, в результате реализуется тот или иной защитный рефлекс.

  • Точно так же за счет последовательного включения мышечных групп головы, шеи, грудной клетки и диафрагмы организуются рефлексы пищевого поведения: сосания, жевания, глотания.

  • установочные рефлексы, обеспечивающие тонус мускулатуры, необходимый для поддержания позы и осуществления рабочих актов;

Эти рефлексы формируются за счет афферентации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное ядро; отсюда переработанная информация оценки необходимости изменения позы посылается к латеральному и медиальному вестибулярным ядрам. Эти ядра участвуют в определении того, какие мышечные системы, сегменты спинного мозга должны принять участие в изменении позы, поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы, участие которых в изменении позы в данный момент необходимо.

  • лабиринтные рефлексы, способствующие правильному распределению мышечного тонуса между отдельными группами мышц при изменении позы тела;

Изменение позы осуществляется за счет статических и статокинетических рефлексов. Статические рефлексы регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы продолговатого мозга обеспечивают перераспределение тонуса мышц туловища для организации позы соответствующей моменту прямолинейного или вращательного движения..

  • рефлексы, связанные с функциями систем дыхания, кровообращения, пищеварения.

Большая часть автономных рефлексов продолговатого мозга реализуется через расположенные в нем ядра блуждающего нерва, которые получают информацию о состоянии деятельности сердца, сосудов, пищеварительного тракта, легких, пищеварительных желез и др. В ответ на эту информацию ядра организуют двигательную и секреторную реакции названных органов.

Возбуждение ядер блуждающего нерва вызывает усиление сокращения гладких мышц желудка, кишечника, желчного пузыря и одновременно расслабление сфинктеров этих органов. При этом замедляется и ослабляется работа сердца, сужается просвет бронхов.

Деятельность ядер блуждающего нерва проявляется также в усилении секреции бронхиальных, желудочных, кишечных желез, в возбуждении поджелудочной железы, секреторных клеток печени.

Рефлекторные центры продолговатого мозга. В продолговатом мозге располагается ряд жизненно важных центров. В структуре ретикулярной формации продолговатого мозга расположены дыхательный и сосудодвигательный центры. Особенность этих центров в том, что их нейроны способны возбуждаться рефлекторно и под действием химических раздражителей.

Дыхательный центр локализуется в медиальной части ретикулярной формации каждой симметричной половины продолговатого мозга и разделен на две части, вдоха и выдоха.

Сосудодвигательный центр (регуляции сосудистого тонуса) функционирует совместно с вышележащими структурами мозга и прежде всего с гипоталамусом. Возбуждение сосудодвигательного центра всегда изменяет ритм дыхания, тонус бронхов, мышц кишечника, мочевого пузыря, цилиарной мышцы и др.

В продолговатом мозге локализуется центр слюноотделения, парасимпатическая часть которого обеспечивает усиление общей секреции, а симпатическая — белковой секреции слюнных желез.

Проводниковые функции продолговатого мозга. Через продолговатый мозг проходят все восходящие и нисходящие пути спинного мозга: спинно-таламический, кортикоспинальный, руброспинальный. В нем берут начало вестибулоспинальный, оливоспинальный и ретикулоспинальный тракты, обеспечивающие тонус и координацию мышечных реакций. В продолговатом мозге заканчиваются пути из коры большого мозга — корковоретикулярные пути. Здесь заканчиваются восходящие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного. Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом.

Через восходящие пути и черепные нервы продолговатый мозг получает импульсы от рецепторов мышц лица, шеи, конечностей и туловища, от кожи лица, слизистых оболочек глаз, носовой и ротовой полости, от рецепторов слуха, вестибулярного аппарата, рецепторов гортани, трахеи, легких, интерорецепторов пищеварительного аппарата и сердечно-сосудистой системы.

Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций, анализе сенсорных раздражений.

Средний мозг.

Средний мозг представлен четверохолмием и ножками мозга (Рис.1,3,4). Наиболее крупными ядрами среднего мозга являются красное ядро, черное вещество и ядра черепных (глазодвигательного и блокового) нервов, а также ядра ретикулярной формации. В строении среднего мозга полностью утрачиваются сегментарные признаки, все клеточные элементы образуют сложные скопления в виде ядер.

◄Рис.4. Средне-нижние отделы головного мозга.

1 – гипоталамус; 6 – продолговатый мозг;

2 – мозолистое тело; 7 – варолиев мост;

3 – таламус 8 – гипофиз;

4 – бугры четверохолмия; 9 – зрительная хиазма

5 - ножки среднего мозга;

Сенсорные функции. Реализуются за счет поступления в него зрительной, слуховой информации.

Рефлекторные функции. Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия.

Верхние из них являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами промежуточного мозга), нижние – слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В буграх происходит первичное переключение зрительной и слуховой информации. От бугров четверохолмия аксоны их нейронов идут к ретикулярной формации ствола, мотонейронам спинного мозга.

Нейроны четверохолмия могут быть полимодальными и детекторными. В последнем случае они реагируют только на один признак раздражения, например смену света и темноты, направление движения светового источника и т. д. Основная функция бугров четверохолмия — организация реакции настораживания и так называемых старт-рефлексов на внезапные, еще не распознанные, зрительные или звуковые сигналы. Активация среднего мозга в этих случаях через гипоталамус приводит к повышению тонуса мышц, учащению сокращений сердца; происходит подготовка к избеганию, к оборонительной реакции.

Четверохолмие организует ориентировочные зрительные и слуховые рефлексы.

У человека четверохолмный рефлекс является сторожевым. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздрагивание, иногда вскакивание на ноги, вскрикивание, максимально быстрое удаление от раздражителя, подчас безудержное бегство.

При нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое. Следовательно, четверохолмия принимают участие в организации произвольных движений.

Двигательная функция. Реализуется за счет ядра блокового нерва, ядер глазодвигательного нерва, красного ядра, черного вещества.

Красные ядра располагаются в верхней части ножек мозга. Они связаны с корой большого мозга (нисходящие от коры пути), подкорковыми ядрами, мозжечком, спинным мозгом (красноядерно-спинномозговой путь). Базальные ганглии головного мозга, мозжечок имеют свои окончания в красных ядрах.

Нарушение связей красных ядер с ретикулярной формацией продолговатого мозга ведет к децеребрационной ригидности. Это состояние характеризуется сильным напряжением мышц-разгибателей конечностей, шеи, спины. Основной причиной возникновения децеребрационной ригидности служит выраженное активирующее влияние латерального вестибулярного ядра (ядро Дейтерса) на мотонейроны разгибателей. Это влияние максимально в отсутствие тормозных влияний красного ядра и вышележащих структур, а также мозжечка. При перерезке мозга ниже ядра латерального вестибулярного нерва децеребрационная ригидность исчезает.

Красные ядра, получая информацию от двигательной зоны коры большого мозга, подкорковых ядер и мозжечка о готовящемся движении и состоянии опорно-двигательного аппарата, посылают корригирующие импульсы к мотонсйронам спинного мозга по рубро-спинальному тракту и тем самым регулируют тонус мускулатуры, подготавливая его уровень к намечающемуся произвольному движению.

Другое функционально важное ядро среднего мозга – черное вещество – располагается в ножках мозга, регулирует акты жевания, глотания (их последовательность), обеспечивает точные движения пальцев кисти руки, например при письме. Нейроны этого ядра способны синтезировать медиатор дофамин, который поставляется аксональным транспортом к базальным ганглиям головного мозга. Поражение черного вещества приводит к нарушению пластического тонуса мышц. Тонкая регуляция пластического тонуса при игре на скрипке, письме, выполнении графических работ обеспечивается черным веществом. В то же время при длительном удержании определенной позы происходят пластические изменения в мышцах за счет изменения их коллоидных свойств, что обеспечивает наименьшие затраты энергии. Регуляция этого процесса осуществляется клетками черного вещества.

Нейроны ядер глазодвигательного и блокового нервов регулируют движение глаза вверх, вниз, наружу, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубовича) регулируют просвет зрачка и кривизну хрусталика.

Проводниковая функция. Заключается в том, что через него проходят все восходящие пути к вышележащим таламусу, большому мозгу и мозжечку. Нисходящие пути идут через средний мозг к продолговатому и спинному мозгу. Это пирамидный путь, корково-мостовые волокна, руброретикулоспинальный путь.

Ретикулярная формация ствола мозга

Ретикулярная формация мозга представлена специфической сетью нейронов с многочисленными диффузными связями между собой и практически со всеми структурами центральной нервной системы. Она располагается в толще серого вещества продолговатого, среднего, промежуточного мозга и изначально связана с ретикулярной формацией спинного мозга. В связи с этим целесообразно ее рассматривать как единую систему.

Ретикулярная формация имеет прямые и обратные связи с корой большого мозга, базальными ганглиями, промежуточным мозгом, мозжечком, средним, продолговатым и спинным мозгом. Генерализованный характер влияния ретикулярной формации на многие структуры мозга дал основание считать ее неспецифической системой..

Основной функцией ретикулярной формации является регуляция уровня активности коры большого мозга, мозжечка, таламуса, спинного мозга.

Промежуточный мозг.

Промежуточный мозг (Рис.1, рис.4) – часть переднего отдела ствола мозга. Он интегрирует сенсорные, двигательные и вегетативные реакции, необходимые для целостной деятельности организма Основными образованиями промежуточного мозга являются зрительные бугры (таламус) и подбугорная область (гипоталамус).

Зрительные бугрымассивное парное образование, они занимают основную массу промежуточного мозга. Зрительные бугры являются центром всех афферентных импульсов. Через зрительные бугры к коре головного мозга поступает информация от всех рецепторов нашего организма, за исключением обонятельных.

В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интероцепторов и начинаются таламо-кортикальные пути. Кроме того, от зрительных бугров нервные импульсы передаются к различным образованиям ствола мозга.

Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состояний множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма в целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер). Ядра образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы:

передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга;

медиальная – в лобную долю коры;

латеральная – в теменную, височную, затылочную доли коры.

По проекциям определяется и функция ядер. Такое деление не абсолютно, так как одна часть волокон от ядер таламуса идет в строго ограниченные корковые образования, другая — в разные области коры большого мозга.

Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

Специфические ядра получают информацию от рецепторов, перерабатывают ее и передают в строго определенные участки III—IV слоев коры головного мозга, где возникают соответствующие ощущения. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопичсскую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа.

Так, латеральное коленчатое тело (одно из специфических ядер таламуса) имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза через передние бугры четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т. е. могут выполнять детекторную функцию.

А в медиальное коленчатое тело поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферетные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры.

Ассоциативные ядра таламуса связаны с лимбической корой (поясной извилиной), лобной, теменной и височной долями коры большого мозга.

Основными клеточными структурами этих ядер являются нейроны, способные выполнять полисенсорные функции. Ряд нейронов изменяет активность только при одновременном комплексном раздражении. На полисенсорных нейронах происходит конвергенция возбуждений разных модальностей, формируется интегрированный сигнал, который затем передается в ассоциативную кору мозга.

Неспецифические ядра не имеют прямой связи с рецепторами организма. Нейроны этих ядер образуют свои связи по ретикулярному типу. Они получают импульсы от рецепторов через большое количество переключений (синапсов). Импульсы от этих образований через подкорковые ядра поступают к множеству нейронов, расположенных в различных областях коры головного мозга, контактируют со всеми ее слоями, образуя не локальные, а диффузные связи, вызывая повышение их возбудимости.

Гипоталамическая (подбугорная) область участвует в регуляции различных видов обмена веществ (белков, жиров, углеводов, солей, воды), регулирует теплообразование и теплоотдачу, состояние сна и бодрствования; В ядрах гипоталамуса происходит образование ряда гормонов, которые затем депонируются в задней доле гипофиза. Передние отделы гипоталамуса являются высшими центрами парасимпатической нервной системы, задние - симпатической нервной системы. Гипоталамус участвует в регуляции многих вегетативных функций организма.

Мозжечок

Мозжечок (малый мозг) (Рис.1, 3, 5) – это непарное образование; он располагается позади продолговатого мозга и варолиева моста, граничит с четверохолмиями, сверху прикрыт затылочными долями больших полушарий.

В мозжечке различают среднюю часть – червь и расположенные по бокам от него два полушария. Вся поверхность мозжечка – кора – образована серым веществом и включает тела различных видов нервных клеток. Кора разделена глубокими поперечными бороздами на доли. Под корой располагается белое вещество – мозговое тело, представляющее собой отростки нейронов коры и расположенные в их толще три пары ядер мозжечка.

Представления о локализации функций в мозжечке объясняется с позиции двух основных теорий – лобулярной и корково-ядерной.

Лобулярная теория, у истоков которой стояли Ларсел и Доу основана на изучении афферентных связей мозжечка. Авторы считают, что функциональное значение имеют доли мозжечка, образованные поперечными бороздами, а не деление его на червь, и полушария как принято в анатомии. Согласно этой теории мозжечок делится на три области.

Древняя часть мозжечка – вестибулярный мозжечок – имеет наиболее выраженные связи с вестибуляр-

Рис.5. Расположение мозжечка на стволе мозга (часть ткани

мозжечка убрана).

ным анализатором, что объясняет значение мозжечка в регуляции равновесия.

Старая часть мозжечка – спиннальный мозжечок – получает информацию преимущественно от проприорецептивных систем мышц, сухожилий, надкостницы, оболочек суставов.

Новый мозжечок – получает информацию от коры, преимущественно по лобно-мостомозжечковому пути, от зрительных и слуховых рецептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции.

Корково-ядерная теория базируется на изучении эфферентных связей мозжечка. Согласно этой теории (Бродал, Экклс) в коре мозжечка выделяются три продольные зоны, которые посылают волокна к одному из ядер мозжечка. Медиальная (червячная) зона – к ядру шатра, промежуточная зона – к вставочному ядру и латеральная зона – зубчатому ядру.

Мозжечок имеет обширные связи с различными отделами центральной нервной системы за счет трех пар ножек. Нижние ножки соединяют мозжечок со спинным и продолговатым мозгом, средние – с варолиевым мостом и через него с двигательной областью коры головного мозга, верхние – со средним мозгом и гипоталамусом.

Мозжечок обеспечивает, прежде всего, двигательные функции – получив из коры больших полушарий информацию о готовящемся движении, он корректирует программу подготовки этого движения. Эфферентные сигналы из мозжечка обеспечивают:

  • регуляцию позы и мышечного тонуса;

  • сенсомоторную координацию позных и целенаправленных движений;

  • координацию быстрых целенаправленных движений, осуществляемых по команде из больших полушарий;

С реализацией первой задачи – управлением тонусом позой и равновесием, в наибольшей степени связана медиальная червячная зона, которая по принципу обратной связи обеспечивает срочную регуляцию антигравитационного тонуса.

Промежуточная зона коры мозжечка (как и предыдущая), получает сигналы не только от спинномозговых путей, но и от двигательной области коры больших полушарий, которая сигнализирует о готовящемся целенаправленном движении. Сопоставляя оба сигнала, структуры мозжечка участвуют в координации целенаправленных движений с рефлексами поддержания позы, обеспечивая выбор позы оптимальной для выполнения движения.

Латеральная кора мозжечка – получает сигналы непосредственно от различных ассоциативных зон коры больших полушарий, о замысле движения. В полушариях и зубчатом ядре мозжечка эта информация преобразуется в программу движения, которая поступает в двигательные зоны коры больших полушарий. Двигательный акт реализуется за счет команд идущих напрямую от двигательной коры и от зубчатого ядра мозжечка через красное ядро в спинной мозг. Так обеспечивается участие мозжечка в организации быстрых целенаправленных движений, протекающих без учета информации поступающей от спинного мозга. Такие движения часто встречаются в спортивной практике, при игре на музыкальных инструментах и пр.

Следует отметить, что влияние нейронов коры на ядра мозжечка в основном является тормозным. Согласно гипотезе Дж. Эклса, большое количество тормозных нейронов в коре мозжечка, предотвращает длительную циркуляцию возбуждения по нейронным цепям, ограничивая существование возбуждающего импульса 100 миллисекундами. Происходит как бы автоматическое стирание предшествующей информации, что позволяет мозжечку участвовать в регуляции быстрых движений.

В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций. В конце XIX века Л. Лючиани, сформулировал три классических симптома: атония – непроизвольное понижение тонуса мышц, астения – снижение силы мышечного сокращения и быстрая утомляемость мышц; астазия – утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение и т.д. Астазия проявляется в виде тремора – дрожания пальцев рук, кистей, головы в покое; этот тремор усиливается при движении.

Позже выяснилось, что при расстройствах мозжечка страдают и произвольные движения. В наибольшей степени проявляются асинергии – расстройства содружественных движений, распад целостного двигательного акта на фрагменты. Асинергия сочетается с дисметрией – утратой соразмерности движений. Возможны появления атаксии – нарушения координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в определенной последовательности. Нагляднее всего это проявляется в изменении походки. Проявлениями атаксии является адиадохокинез – неспособность на быструю последовательность противоположных движений быстро вращать ладони вниз-вверх, или сгибать и разгибать пальцы.

Отдельно следует отметить дизартрию – расстройство организации речевой моторики. При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (скандированная речь).

Отметим, что повреждение мозжечка ведет к расстройствам не только врожденных двигательных актов, но и движений, которые были приобретены человеком в результате обучения. Это позволяют сделать вывод, о том, что само обучение шло с участием мозжечковых структур, а следовательно, мозжечок принимает участие в организации процессов высшей нервной деятельности;

При частичных повреждениях мозжечка хорошо проявляется роль взаимодействия лобной доли коры большого мозга с мозжечком. Одномоментное удаление мозжечка приводит к гибели человека, в то же время, если удаляется часть мозжечка, это вмешательство, как правило, несмертельно, а возникающие симптомы повреждения (тремор, атаксия, астения и т. д.), постепенно исчезают. Если на фоне исчезновения мозжечковых симптомов нарушается функция лобных долей мозга, то мозжечковые симптомы возникают вновь. Следовательно, кора лобных долей большого мозга компенсирует расстройства, вызываемые повреждением мозжечка.

Мозжечок способен регулировать и вегетативные функции организма, оказывая угнетающее или стимулирующее влияние на работу сердечно-сосудистой, дыхательной, пищеварительной и других систем. В результате двойственного влияния мозжечок стабилизирует, оптимизирует функции систем организма. Направленность реакции зависит от фона, на котором она вызывается. Эти факты позволили Л.А. Орбели считать мозжечок не только регулятором моторной деятельности, но и адаптационно-трофическим органом, который определяет возбудимость вегетативных и соматических центров. Однако, пока не ясно какое место занимает мозжечок в иерархии структур, регулирующих вегетативные функции.

Таким образом, мозжечок принимает участие в различных видах деятельности организма: моторной, соматической, вегетативной, сенсорной, интегративной и т. д. Однако эти функции мозжечок реализует через другие структуры центральной нервной системы. Мозжечок выполняет функцию оптимизации отношений между различными отделами нервной системы, что реализуется, с одной стороны, активацией отдельных центров, с другой – удержанием этой активности в определенных рамках возбуждения, лабильности и т. д.

После частичного повреждения мозжечка могут сохраняться вес функции организма, но сами функции, порядок их реализации, количественное соответствие потребностям трофики организма нарушаются

Базальные ядра (ганглии).

К подкорковым, или базальным, ядрам относятся три парных образования: хвостатое ядро, скорлупа и бледный шар (Рис.6). Базальные ядра расположены внутри больших полушарий, в нижней их части, между лобными долями и промежуточным мозгом. Эти анатомические образования формируют так называемую стриопаллидарную систему, которая по филогенетическим и функциональным критериям разделяется на древнюю часть – палеостриатум, и новую – неостриатум. Палеостриатум представлен бледным шаром, а неостриатум состоит из хвостатого ядра и скорлупы, которые объединяются под названием полосатого тела, или стриатума.

К стриопаллидарной системе часто относят также субталамическое ядро и черное вещество среднего мозга, с которые образуют с базальными ядрами функциональное единство.

◄Рис.6. Базальные ганглии в структуре ЦНС

Полосатое тело является своеобразным коллектором афферентных входов идущих к базальным ядрам от новой коры большого мозга, неспецифических ядер таламуса и черного вещества среднего мозга. Через бледный шар, притормаживая его деятельность полосатое тело ведает сложными двигательными функциями, участвует в осуществлении безусловно-рефлекторных реакций цепного характера. При повреждении полосатого тела наблюдается атетоз – медленные червеобразные движения кистей и пальцев рук, хорея – судорожные подергивания мимических мышц и мускулатуры конечностей.

Кроме того, полосатое тело через гипоталамус регулирует вегетативные функции организма, а также вместе с ядрами промежуточного мозга обеспечивает осуществление сложных безусловных рефлексов цепного характера - инстинктов.

Бледный шар, наоборот, является сосредоточением выходных, эфферентных путей стриопаллидарной системы. Аксоны его нейронов подходят к ядрам промежуточного и среднего мозга, оказывая, через красное ядро, влияние на экстрапирамидный путь двигательной регуляции, а через ядра таламуса – на двигательные области коры больших полушарий.

Таким образом, базальные ядра являются высшими подкорковыми интегративными центрами, играющими важную роль в регуляции движений и сенсомоторной координации

Получая информацию от ассоциативных зон коры, базальные ядра участвуют в создании программ целенаправленных движений с учетом доминирующей мотивации. Далее, от базальных ядер информация поступает в передний таламус, где интегрируется с информацией приходящей от мозжечка. Из таламических ядер импульсация достигает двигательной коры, которая отвечает за реализацию программы целенаправленного движения через посредство стволовых и спинальных двигательных центров. Так в общих чертах можно представить место базальных ядер в целостной системе двигательных центров мозга.

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

Теория нейронных сетей, опираясь на механизмы распространения возбуждения, объясняет сложнейшие закономерности формирования рефлекторного ответа, однако не может объяснить распределение функций в центральной нервной системе.

Дело в том, что нервная система формируется не сразу, её развитие происходит эволюционно, и вместе с появлением новых отделов, происходит и усложнение контролируемых и регулируемых ими функций. Наиболее сложные изменения происходят в центральной нервной системе.

Деление ЦНС на отделы отражает эволюционный ход её развития и с позиции системного подхода определяется скорее анатомией, нежели физиологией, поскольку отражает, прежде всего, усложнение строения а не функционирования. Мы попробуем изучить роль этих отделов в обеспечении рефлекторной деятельности о формировании ответных реакций организма.

1. Значение передних и задних корешков спинного мозга (демонстрационный).

В начале XIX в. Ч. Белл и Ф. Мажанди установили, что импульсы поступают в спинной мозг по задним, а выходят из него по передним корешкам. Это свидетельствует о том, что задние корешки спинного мозга являются чувствительными, а передние – двигательными (закон Белла – Мажанди).

В состав задних корешков входят аксоны афферентных нейронов, тела которых расположены в спинномозговых (спинальных) ганглиях. Передние корешки составляют преимущественно аксоны двигательных нейронов, иннервирующие скелетную мускулатуру.

Разная функция корешков отчетливо выступает, если у лягушки перерезать на одной стороне три передних – VIII, IX, X, а на другой три соответствующих задних корешка. Раздражая после этого поочередно то одну, то другую заднюю лапку, можно видеть, что первая теряет способность вовлекаться в двигательные реакции, а вторая теряет чувствительность.

О с н а щ е н и е: пробковая пластинка для фиксации лягушки; катушка из-под ниток; ватные тампончики; иголка; препаровальный набор; маникюрные щипчики; стеклянные крючки; стеклянный колпак; этиловый эфир для наркоза; тарелка. Исследование проводят на лягушке.

С о д е р ж а н и е р а б о т ы. Для большей наглядности наблюдение лучше проводить на двух лягушках, каждая из которых отличается комбинацией разрушаемых корешков.

С лабо наркотизированную лягушку зафиксируйте на пробковой пластинке спинкой вверх. Под брюшко лягушки подведите валик, используя для этого катушку из-под ниток. Над нижним отделом позвоночника разрежьте кожу строго по средней линии. Скальпелем отпрепарируйте мышцы по обеим сторонам позвоночника, останавливая кровотечение ватными тампонами. Далее перережьте сухожильную связку между уростилем и последним позвоночным позвонком. Осторожно введите браншу маникюрных щипчиков в позвоночный канал и как можно латеральнее перекусите дуги четырех нижних позвонков сначала с одной, а затем с другой стороны. После вскрытия позвоночного канала удалите оболочки спинного мозга – открываются спинномозговые корешки. При положении лягушки спинкой вверх верхние корешки – чувствительные, а нижние – двигательные (Рис.4).

◄Рис. 4. Расположение чувствительных и двигательных корешков в спинном мозге лягушки.

На одной стороне маленькими ножницами перережьте по одному задние корешки, приподнимая каждый из них стеклянным крючком. На противоположной стороне перережьте передние корешки, отодвинув стеклянным крючком задние корешки в сторону. Операцию проводите без резких движений, чтобы не повредить спинной мозг. Когда все манипуляции выполните, рану закройте, зашив кожу. Наблюдение можно проводить через 3 – 4 часа.

Рис. 5. Влияние перерезки спинномозговых корешков на эффект раздражения лапки лягушки (схема).

А – эффект до перерезки; Б – эффект после перерезки левого чувствительного и правого двигательного корешков; В – эффект перерезки левого двигательного корешка;

Прежде чем производить эксперимент на оперированных животных, посмотрите (или вспомните) реакции животного без перерезки корешков спинного мозга. При прищипывании любой из лапок возникает выраженный сгибательный рефлекс (Рис 5А).

Раздражение левой лапки первой лягушки не дает никакого результата (Рис. 5Б), так как с этой стороны перерезаны чувствительные корешки спинного мозга, и возбуждение в центральную нервную систему не проводится и на двигательные нервы не попадает. Раздражение, у этой же лягушки, правой лапки, вызывает сокращение левой (Рис. 5Б), Значит, через сохраненные с правой стороны задние корешки возбуждение поступает в ЦНС, а через сохраненные передние слева – к мышцам левой лапки. Следовательно – задние корешки являются чувствительными, а передние – двигательными. Поэтому правая лапка у этой лягушки, сокращаться не может ни при каких условиях, так как возбуждение к мышцам этой лапки не поступает.

У второй лягушки (Рис.5В) раздражение левой лапки, вызывает сокращение правой (эту ситуацию мы уже наблюдали у первой лягушки). На левой лапке перерезаны двигательные корешки и движение невозможно. При раздражении правой лапки, она е и сокращается, так как с этой стороны сохранены и чувствительные и двигательные корешки.

Таким образом, мы убеждаемся, что задние корешки являются чувствительными (афферентными), а передние – двигательными (эфферентными).

Оформление протокола.

  1. Зарисуйте схему опыта Белла— Мажанди. Отметьте на ней передние и задние корешки спинного мозга.

  2. На основании результатов эксперимента сделайте заключение о роли передних и задних корешков спинного мозга.

  3. Объясните, почему раздражение лапок с одной стороны тела, вызывает сокращение лапок с другой. Какое свойство нервной системы обеспечивает такую возможность?

  4. Объясните, как будут (и будут ли) сокращаться передние лапки каждой лягушки, если раздражитель будет достаточно сильным.

2. Наблюдение рефлексов положения тела у лягушки

Для наблюдения рефлексов, какого либо отдела центральной нервной системы в чистом виде, необходимо исключить влияние других отделов, что обеспечивается, например, методом разрушения или перерезки. Этот метод знаком вам по предыдущим занятиям: приготовлению спинальной лягушки и наблюдению рефлексов спинного мозга. Спинальное животное способно осуществлять сложные рефлексы защитного характера. На спинальной лягушке можно наблюдать изменчивость рефлекторной реакции, ее приспособительный характер и др.

Однако перерезка на уровне других отделов ЦНС – продолговатого мозга (бульбарные животные), среднего мозга (мезэнцефалические животные) затруднена, а на более высоких уровнях и невозможна. Изучение рефлекторной деятельности соответствующих отделов, требует специальных условий и возможностей, трудно создаваемых в условиях учебной лаборатории.

Тем не менее, наблюдение рефлекторной активности, особенно древних отделов ЦНС, обеспечивающих координацию движений и поддержание позы, возможно и без специальных условий.

О с н а щ е н и е: фанерные или пластмассовые дощечки 20 х 30 см. Работу проводят на интактной лягушке.

С о д е р ж а н и е р а б о т ы.

Держите дощечку горизонтально и аккуратно посадите лягушку на её середину, добейтесь спокойного состояния лягушки путем поглаживания спинки. Так как целью работы является наблюдение изменения позы животного, следует исключить хождение по лаборатории, резкие движения, громкие звуки, яркие вспышки света, и другие сигналы способные вызвать защитную реакцию.

Раздражителем при наблюдении данных рефлексов является изменение нормального положения тела и головы животного. Рецепторы – отолитовы органы, зрительные рецепторы, и рецепторы боковых поверхностей кожи, рефлекторный центр – красные ядра среднего мозга.

1. Выпрямительный рефлекс.

Приподнимите дощечку со спокойно сидящей лягушкой над столом, и медленно опустите тот конец дощечки, куда повернута голова лягушки.

Пронаблюдайте и запишите изменения в положении головы.

2. Рефлекс переползания.

Приподняв дощечку над столом, поворачивайте ее вокруг горизонтальной оси, приподнимая головной конец дощечки. Пронаблюдайте и опишите движения лягушки во время переворачивания дощечки.

3. Рефлекс переворачивания.

Аккуратно положите лягушку на спину. Пронаблюдайте и запишите реакцию.

4. Статокинетические рефлексы.

Раздражитель – неравномерная скорость движения во всех плоскостях пространства. Не очень резко, но достаточно уверенно перемещайте дощечку в пространстве на расстояние вытянутой руки в любом направлении.

Пронаблюдайте и запишите реакцию, после каждого перемещения.

5. Позный рефлекс промежуточного мозга.

На этой же лягушке можно убедиться, что рефлекторная деятельность осуществляется автоматически и происходит без участия сознания. Для этого прижмите две дощечки друг к другу под углом 900. На горизонтальную дощечку посадите лягушку, прижмите её спиной к вертикальной дощечке и удерживайте в таком положении 1 – 2 мин. Когда лягушка оцепенеет, руку медленно отведите, лягушка останется «сидеть» в неестественной позе. Если гипноз окажется глубоким можно вытянуть её передние лапы

Оформление протокола.

1. Занесите в протокол результат проведенных наблюдений. Протокол оформите в виде таблицы:

Рефлекс положения тела

Наблюдаемые изменения положения тела

Выпрямительный

Переползания

Переворачивания

Статокиненические:

перемещения вперед – назад:

перемещения влево – вправо;

перемещения вверх – вниз;

2. Являются наблюдаемые вами движения стереотипными? О чем это говорит?

3. Сделайте вывод о роли промежуточного мозга в сохранении позы и формировании произвольных движений.