
- •Механика в задачах
- •Содержание
- •Предисловие
- •2.Почему задача "не решается"?
- •3. "А в учебнике этого нет!"
- •4. Что Вы найдете в этом руководстве и чего не найдете.
- •5.Предварительные замечания.
- •1. Кинематика материальной точки
- •Задача 3.
- •Решение.
- •Задача 4.
- •Задача 5
- •Решение
- •2. Законы ньютона
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •Задача 8
- •Решение
- •3. Импульс.
- •Задача 1.
- •Задача 2.
- •Решение.
- •Задача 3
- •Решение
- •Решение.
- •Задача 5
- •Решение.
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •4. Работа. Кинетическая энергия
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение.
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •5. Движение точки в стационарных потенциальных полях. Закон сохранения энергии
- •Задача 1
- •Решение
- •Задача 2
- •Решение.
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •6. Момент импульса системы материальных точек. Уравнение моментов
- •Задача 1
- •Решение
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •7. Динамика твердого тела
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 8
- •Решение
- •Задача 9
- •Решение
- •Задача 10
- •Решение
- •Задача 11
- •Решение
- •Задача 12
- •Решение
- •Задача 13
- •Решение
- •Задача 14
- •Решение
- •Задача 15
- •Решение
- •Задача 16
- •Решение
- •Задача 17
- •Решение
- •Задача 18
- •Решение
- •8. Движение тел в неинерциальных системах отсчета. Силы инерции
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •9. Колебания
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •Задача 8
- •Решение
- •Задача 9
- •Решение
- •Задача 10
- •Решение
Задача 3
Найти частоту колебаний поплавка на воде, если он плавает в воде в вертикальном положении, его масса т, площадь поперечного сечения S. Каким должен быть поплавок, имеющий малую амплитуду колебаний при наличии волн на поверхности воды?
Решение
В положении равновесия сила тяжести уравновешена силой Архимеда. Но если поплавок сместить из положения равновесия, то векторная сумма F силы Архимеда и силы тяжести будет отлична от нуля и направлена навстречу перемещению поплавка, т.е. при его погружении она направлена вверх, при подъёме из воды – вниз. Поэтому эту сумму сил можно записать в виде:
Fx = ‒ gSx.
Здесь х – смещение поплавка из положения равновесия (при погружении x > 0), а – плотность воды.
Рис. 1
таx = – gSx.
Записав ускорение как вторую производную по времени от перемещения поплавка, получим уравнение:
.
Поделив обе части уравнения на массу поплавка, и перенеся все члены уравнения в одну сторону, получим уравнение гармонических колебаний:
.
Рис. 2
.
Полученный ответ показывает, что лучший поплавок для рыбной ловли, который остаётся практически неподвижным при наличии волн на воде, должен иметь малое поперечное сечение и большую массу (Рис. 2). В этом случае частота его колебаний будет малой по сравнению с частотой колебаний волн на воде. Это приводит к малой амплитуде колебаний поплавка под действием волн. Обоснуйте сами эти выводы, а для подсказки обратитесь к п.10 введения к данному разделу.
Задача 4
Найти период колебаний маятника, находящегося на тележке, которая движется с ускорением а.
Решение
Рис. 1
,
величина соответствующего ускорения "свободного падения" равна:
.
Тем самым частота колебаний маятника:
.
Задача 5
Тело массы т движется по горизонтальному гладкому стержню, к концам которого оно прикреплено двумя невесомыми одинаковыми пружинами жёсткости k. Стержень вращается вокруг вертикальной оси с угловой скоростью . Найти частоту колебаний тела относительно его равновесного положения.
Решение
Рис. 1
.
Как видим, сила пропорциональна отклонению тела от положения равновесия. Следовательно, тело совершает гармонические колебания с частотой :
Нетрудно понять, что колебания будут иметь место лишь при малой скорости вращения, пока подкоренное выражение положительно:
Подумайте сами, что произойдёт при нарушении этого неравенства.
Задача 6
Найти частоту малых колебаний относительно равновесного положения тела из задачи 6 раздела 8.