
- •Механика в задачах
- •Содержание
- •Предисловие
- •2.Почему задача "не решается"?
- •3. "А в учебнике этого нет!"
- •4. Что Вы найдете в этом руководстве и чего не найдете.
- •5.Предварительные замечания.
- •1. Кинематика материальной точки
- •Задача 3.
- •Решение.
- •Задача 4.
- •Задача 5
- •Решение
- •2. Законы ньютона
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •Задача 8
- •Решение
- •3. Импульс.
- •Задача 1.
- •Задача 2.
- •Решение.
- •Задача 3
- •Решение
- •Решение.
- •Задача 5
- •Решение.
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •4. Работа. Кинетическая энергия
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение.
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •5. Движение точки в стационарных потенциальных полях. Закон сохранения энергии
- •Задача 1
- •Решение
- •Задача 2
- •Решение.
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •6. Момент импульса системы материальных точек. Уравнение моментов
- •Задача 1
- •Решение
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •7. Динамика твердого тела
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 8
- •Решение
- •Задача 9
- •Решение
- •Задача 10
- •Решение
- •Задача 11
- •Решение
- •Задача 12
- •Решение
- •Задача 13
- •Решение
- •Задача 14
- •Решение
- •Задача 15
- •Решение
- •Задача 16
- •Решение
- •Задача 17
- •Решение
- •Задача 18
- •Решение
- •8. Движение тел в неинерциальных системах отсчета. Силы инерции
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •9. Колебания
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •Задача 8
- •Решение
- •Задача 9
- •Решение
- •Задача 10
- •Решение
Задача 3
Из центра вращающейся карусели радиуса R, по мишени, установленной на краю карусели в точке А производится выстрел. Найти отклонение пули от мишени, если угловая скорость вращения карусели равна , скорость пули –V. При расчете принять R<< V.
Решение
Рис. 1
Рассмотрим теперь движение пули в системе отсчёта, связанной с каруселью. Эта система отсчета неинерциальная, поэтому на пулю в процессе ее движения действуют центробежная сила:
Fцб = m2r
и сила Кориолиса:
Fкор = 2m[V',].
Поскольку, согласно условию, R<<V, то Fцб/Fкор ~ R/V<< 1, то влиянием центробежной силы, ввиду ее малости по сравнению с силой Кориолиса, мы полностью пренебрежём.
Сила Кориолиса направлена перпендикулярно скорости пули V', поэтому она будет вызывать отклонение пули вбок. Поскольку, согласно условию задачи выполняется сильное неравенство R<<V, которое означает, что карусель вращается сравнительно медленно. Поэтому сила Кориолиса оказывает слабое возмущающее воздействие на движение пули. Но это означает, что если представить скорость пули V' в виде:
V' = V + V1,
где V – начальная скорость пули, а V1 – поправка к скорости, вызванная силой Кориолиса, то V1 << V. Поэтому в выражении для силы Кориолиса Fкор = 2т[V',], можно с хорошей точностью заменить V' на V. Такая замена, мало изменяя Fкор, упрощает задачу, поскольку сила Кориолиса оказывается теперь постоянной, соответственно оказывается постоянным и вызванное ею ускорение акор=2[V,].
Интегрируя по времени соотношение dV'/dt = aкор, получим с учетом того, что в начальный момент V' = V:
V' = V + aкорt.
Полученное соотношение показывает, что в радиальном направлении (направлении выстрела) пуля движется с постоянной скоростью V, а в перпендикулярном направлении ее скорость линейно возрастает со временем. Интегрируя по времени соотношение dr'/dt=V' с учетом выражения для V' получим:
Рис. 2
Пуля долетит до края карусели через время t = R/V. За это же время пуля отклонится вбок на расстояние
В нашем случае aкор = 2V, поэтому:
что полностью совпадает с прежним результатом. Поделив S на R, получим угол, на который отклонится пуля от первоначального направления за время полета:
Согласно условию задачи
поэтому пуля отклоняется на малый угол. Это показывает, что использованное нами соображение о малости влияния силы Кориолиса подтверждается окончательным результатом.
Задача 4
С высокой башни, расположенной на экваторе, свободно падает тело. В каком направлении, и на какое расстояние отклонится тело от вертикали вследствие вращения Земли? Сделать численную оценку, приняв высоту башни равной 500 м.