
- •Механика в задачах
- •Содержание
- •Предисловие
- •2.Почему задача "не решается"?
- •3. "А в учебнике этого нет!"
- •4. Что Вы найдете в этом руководстве и чего не найдете.
- •5.Предварительные замечания.
- •1. Кинематика материальной точки
- •Задача 3.
- •Решение.
- •Задача 4.
- •Задача 5
- •Решение
- •2. Законы ньютона
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •Задача 8
- •Решение
- •3. Импульс.
- •Задача 1.
- •Задача 2.
- •Решение.
- •Задача 3
- •Решение
- •Решение.
- •Задача 5
- •Решение.
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •4. Работа. Кинетическая энергия
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение.
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •5. Движение точки в стационарных потенциальных полях. Закон сохранения энергии
- •Задача 1
- •Решение
- •Задача 2
- •Решение.
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •6. Момент импульса системы материальных точек. Уравнение моментов
- •Задача 1
- •Решение
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •7. Динамика твердого тела
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 8
- •Решение
- •Задача 9
- •Решение
- •Задача 10
- •Решение
- •Задача 11
- •Решение
- •Задача 12
- •Решение
- •Задача 13
- •Решение
- •Задача 14
- •Решение
- •Задача 15
- •Решение
- •Задача 16
- •Решение
- •Задача 17
- •Решение
- •Задача 18
- •Решение
- •8. Движение тел в неинерциальных системах отсчета. Силы инерции
- •Задача 1
- •Решение
- •Задача 2
- •Решение
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •9. Колебания
- •Задача 3
- •Решение
- •Задача 4
- •Решение
- •Задача 5
- •Решение
- •Задача 6
- •Решение
- •Задача 7
- •Решение
- •Задача 8
- •Решение
- •Задача 9
- •Решение
- •Задача 10
- •Решение
Задача 1
Шайба движется по гладкой горизонтальной плоскости и испытывает в точке 0 упругий удар с гладкой неподвижной стенкой. Найти точки, относительно которых момент импульса шайбы остается постоянным в этом процессе. Угол между направлением скорости шайбы и нормалью к стенке равен .
Решение
Движение шайбы представлено на рис.1. Так как стенка гладкая то Fтр = 0, и N – сила реакции при ударе направленная перпендикулярно стенке, ее момент равен нулю относительно любой точки, лежащей на прямой OO', перпендикулярной стенке.
Согласно уравнению моментов dL/dt = M. Так как относительно точек прямой ОО' момент силы реакции M= 0, то dL/dt = 0 и L = const. Итак, момент импульса шайбы сохраняется относительно любой точки, лежащей на прямой ОО'. Другие силы, действующие на шайбу, как нетрудно понять, не изменяют ее момента (разберитесь с этим сами).
Рис. 1
На гладкой горизонтальной плоскости лежат две небольшие одинаковые шайбы массы m каждая. Шайбы соединены друг с другом невесомой пружиной длины l0 и жесткости k. В некоторый момент времени одной из шайб сообщили скорость v0 в горизонтальном направлении, перпендикулярно пружине. Найти максимальное относительное удлинение пружины в процессе движения, если известно, что оно значительно меньше единицы.
Решение
Этих трёх законов сохранения достаточно, чтобы решить задачу. Удобнее всего делать это в системе отсчета, связанной с центром инерции. В этой системе отсчета сумма импульсов шайб равна нулю, откуда следует, что в любой момент времени скорости шайб равны по величине и направлены в противоположные стороны. Начальные скорости шайб относительно плоскости равны соответственно v0 и нулю. Поэтому скорость центра инерции:
Скорости шайб по отношению к центру инерции равны, соответственно:
Причем скорости v1 и v2 направлены перпендикулярно пружине.
Так как в начальный момент времени пружина не деформирована, то энергия системы относительно ее центра масс определяется в этот момент лишь кинетической энергией частиц:
Момент импульса L1 системы шайб относительно центра инерции в этот же момент времени равен:
Когда пружина окажется максимально растянутой, скорости шайб опять будут направлены перпендикулярно пружине, иначе шайбы удалялись бы или приближались друг к другу, т.е. длина пружины либо увеличивалась, либо уменьшалась бы, но, в любом из этих случаев, не была бы в этот момент максимальной. Если обозначить величину скорости шайб в этот момент через ', длину пружины в этот момент через l', то
В выражении для энергии второе слагаемое представляет собой потенциальную энергию растянутой на длину l’ – l0 пружины.
В силу законов сохранения энергии и момента импульса имеем следующие уравнения:
Выразив новую скорость шайб v’ из второго из этих уравнений, и подставив её в первое уравнение, найдём:
откуда приходим к уравнению:
После сокращения обеих частей уравнения на l’– l0 получим:
а учитывая малую величину удлинения пружины (l’– l0 << l0), приходим к ответу:
Из полученного ответа видно, что удлинение пружины будет малым, если выполнено неравенство: