Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мет. вказ. практика 2011.doc
Скачиваний:
5
Добавлен:
09.11.2019
Размер:
1.58 Mб
Скачать

Методичні вказівки до розв’язання задачі 14, 15, 16.

Як вже наголошувалося раніше, інфляційні процеси є одним з чинників зміни вартості грошей в часі. Тому у фінансових розрахунках необхідно враховувати інфляційний чинник.

Для визначення майбутньої вартості грошей з урахуванням інфляції по схемі складних відсотків може бути використана формула:

, (3.32)

де FL - майбутня вартість грошей з урахуванням інфляції по схемі складних відсотків;

Р - первинна сума вкладених грошей;

- множник нарощування, що враховує середньорічні темпи інфляції;

t - число повних років;

n — номінальна ставка відсотків;

L — темп приросту інфляції;

(1 + L)t = Jt - індекс інфляції за t період.

Для зменшення дії інфляції і компенсації втрат від зниження купівельної спроможності грошей використовуються різні методи. Одним з них є індексація процентної ставки. Суть цього методу полягає в тому, що процентна ставка корегується відповідно до темпу інфляції. Величина корегування зазначається в договорі.

Процентну ставку, скореговану на темп інфляції можна визначити по формулі:

, (3.33)

де Jt — індекс інфляції за t період;

t - термін фінансової операції;

n - номінальна процентна ставка;

nL - процентна ставка, скорегована на індекс інфляції.

При видачі довгострокових кредитів складна ставка відсотка (nL), що забезпечує при річному рівні інфляції (L) реальну ефективність фінансової операції (n), визначається по формулі:

, (3.34)

У тому випадку, коли використовується величина індексу інфляції за весь термін фінансової операції, то процентна ставка, що враховує інфляцію, визначається по формулі:

(3.35)

Методичні вказівки до розв’язання задачі 17.

Справжня вартість грошей - це сума, що отримується в результаті приведення майбутньої вартості грошей до справжнього моменту за допомогою дисконтної ставки.

Якщо припустити, просту фінансову операцію, в результаті якої майбутня вартість засобів (F) приводиться до деякої справжньої суми (Р), то така операція характеризується показником, що називається темпом зниження (і(t)):

(3.36)

Темп зниження прийнято називати коефіцієнтом дисконтування або дисконтною ставкою.

Методичні вказівки до розв’язання задачі 18, 19.

Метод дисконтування найчастіше використовується в операціях по обліку векселів і оцінки ефективності інвестиційних проектів.

Облік векселя - це вирішення банку купити вексель у векселедержателя.

У теорії фінансових обчислень існують два методи розрахунку справжньої вартості: математичний і банківський (комерційний).

При математичному методі визначення справжньої вартості використовується процентна дисконтна ставка, тобто вирішується завдання зворотнє визначенню нарощеної суми. Це завдання, формулюється таким чином: яку суму грошей слід дати у борг на термін (t) років, щоб при нарахуванні на неї відсотків по ставці (n) отримати нарощену величину, рівну (F).

Банківський метод визначення справжньої вартості заснований на використанні облікової ставки (d), тобто відсотки за користування позикою нараховуються на суму, що підлягає сплаті в кінці терміну позики.

Визначення справжньої вартості грошей при математичному методі припускає використання схем простої і складної дисконтної ставки.

Справжня вартість грошей при використанні простій дисконтної ставки визначається по формулі:

, (3.37)

де Р - проста процентна дисконтна ставка;

і - термін фінансової операції (число повних років); у випадку коли (і) менше 1 року, тоді (f - число днів операції або число днів обернення векселя, або число днів до дати погашення векселя, або число місяців руху векселя; k - тривалість року в днях або в місяцях – 365 (366) днів або 12 місяців):

F - майбутня вартість грошей (майбутня або номінальна вартість векселя).

Дисконт визначається по формулі:

, (3.38)