Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мет. вказ. практика 2011.doc
Скачиваний:
5
Добавлен:
09.11.2019
Размер:
1.58 Mб
Скачать

Методичні вказівки до розв’язання задачі 9, 10.

В умовах ринкової економіки, коли кон'юнктура фінансового ринку може мінятися достатньо швидко, банки використовують не тільки фіксовані, але і плаваючі складні процентні ставки.

Майбутня вартість грошей при плаваючих по періодах ставкам складних відсотків визначається по формулі:

(3.16)

де n1, n2, …, nm - послідовні значення ставок відсотків;

t1, t2, …, tm – періоди, на протязі яких використовуються відповідні ставки відсотків.

Методичні вказівки до розв’язання задачі 11.

Якщо термін фінансової операції виражений дробовим числом, то в таких випадках нарахування відсотків може виконуватися двома способами:

а) по формулі складних відсотків

, (3.17)

де t = a+b - період операції (а — ціле число років, b — дробова частина року).

б) змішаним способом

, (3.18)

При t = b < 1, тобто при загальному терміні менше року, майбутня вартість грошей по змішаному методу буде більша, оскільки (1 + ) > (1 + n)b.

У практиці фінансових обчислень дуже часто передбачається внутрішньорічне нарахування відсотків з їх капіталізацією. Річна ставка в цьому випадку називається номінальною, а для внутрішньорічних нарахувань вказується число періодів (m), по яких проводиться нарахування відсотку протягом року. В цьому випадку майбутня вартість грошей при внутрішньорічних нарахуваннях визначається по формулі:

, (3.19)

де m - число періодів нарахування відсотків в році.

Методичні вказівки до розв’язання задачі 12.

У фінансових обчисленнях по схемі складних відсотків часто виникає необхідність за відомими даними визначити період дії фінансової угоди або процентну ставку.

Термін дії фінансової операції можна визначити по формулам:

а) при нарощуванні по номінальній ставці відсотків:

, (3.20)

б) за умови внутрішніх нарахувань (m) разів на рік:

, (3.21)

Номінальна процентна ставка визначається по формулі:

, (3.22)

Процентна ставка при внутрішньорічних нарахуваннях визначається по формулі:

, (3.23)

Різними видами фінансових угод можуть бути передбачені різні схеми нарахування відсотків. Щоб полегшити порівняльний аналіз ефективності таких договорів необхідно мати показник, який був би універсальним для будь-якої схеми нарахування. Таким показником може бути ефективна річна процентна ставка (r), яка забезпечує перехід від первинної величини вкладеної суми (Р) до майбутньої вартості грошових коштів (F) при заданих значеннях цих показників.

По Е.М. Четиркіну множники номінальної і ефективної ставок повинні бути рівні:

, (3.24)

Звідки ефективна річна процентна ставка дорівнює:

, (3.25)

З формули 25 виходить, що ефективна ставка залежить від кількості внутрішньорічних нарахувань, причому із зростанням (m) вона збільшується.

Методичні вказівки до розв’язання задачі 13.

Нарахування відсотків на початково вкладену суму грошових коштів проводитися дуже часто, тому такий процес нарахування можна розглядати як безперервний. В цьому випадку використовуються безперервні відсотки. Суть безперервних відсотків полягає в тому, що кількість періодів нарощування прагне до нескінченності, а часовий інтервал між періодами нарахування - до нуля.

Позначимо ставку безперервних відсотків (q), тоді майбутня вартість грошей в межах одного року визначається по формулі:

, (3.26)

Якщо процес безперервного нарахування відсотків продовжується більше 1 року, то формула майбутньої вартості приймає вигляд:

(3.27)

Із взаємозв'язку між процентною і безперервною ставками виходить:

, (3.28)

(3.29)

Нарахування складних антисипативних відсотків проводиться аналогічно розрахунку простих антисипативних відсотків. З цією метою для визначення майбутньої вартості грошей при використанні складних антисипативних відсотків застосовується формула:

, (3.30)

де - коефіцієнт нарощування при обчисленні складних антисипативних відсотків;

d - облікова ставка складних відсотків;

t - число років;

Р - первинна сума грошей;

F - майбутня вартість грошей.

Якщо нарощування по складних антисипативним відсотках проводиться (m) раз на рік, то майбутня вартість грошей визначається по формулі:

, (3.31)

де m - число періодів нарахування процесів в рік.