
- •1Механика. Механическое движение. Виды движения. Материальная точка. Система отсчета.
- •2.Траектория. Путь. Перемещение.
- •3.Средняя скорость. Мгновенная скорость.
- •4.Среднее ускорение. Мгновенное ускорение. Полное ускорение.
- •5.Равномерное прямолинейное движение. Ускоренное движение.(формулы, графики зависимости от времени).
- •6.Вращательное движение. Угловая скорость, угловое ускорение. Формулы кинематики вращательного движения.
- •7.Динамика. Инерция. 1-ый закон Ньютона. Инерциальные системы отсчета.
- •8.Инертность. Масса. Сила. 2-й закон Ньютона. Импульс. Импульс силы. Закон сохранения импульса.
- •10. Работа. Энергия. Механическая энергия. Консервативные, диссипативные силы. Мощность.
- •11. Удар. Виды ударов. Абсолютно упругий удар. Пример расчета скоростей для абсолютной упругости и неупругого ударов.
- •12. Механика твердого тела. Центр масс. Момент инерции. Момент инерции сплошного цилиндра(вывод).
- •13. Теорема Штейнера. Кинетическая энергия вращательного движения.
- •14.Момент силы. Основное уравнение динамики вращательного движения.
- •19. Термодинамическая система. Макропараметры системы. Процесс. Виды процессов.
- •20. Уравнение состояния идеального газа. Уравнение Менделеева-Клаперона.
- •25. Первое начало термодинамики.
- •27. Тепловые машины. Кпд тепловой машины. Теорема Клаузиуса.
- •32. Потенциал. Разность потенциалов.Эквипотенциальная поверхность. Потенциал точечного заряда.
- •32. Потенциал. Разность потенциалов. Эквипотенциальная поверхность. Потенциал поля точечного заряда.
- •33. Электроемкость. Конденсатор. Соединение конденсаторов (последовательное, параллельное).
- •34. Постоянный ток. Условия существования постоянного тока. Плотность тока.
- •35. Сопротивление. Соединение проводников (последовательное, параллельное). Закон Ома для участка цепи.
- •36. Эдс. Сторонние силы. Закон Ома для полной цепи.
- •37. Работа тока. Закон Джоуля-Лнца. Мощность тока.
- •По закону сохранения энергии:
- •45. Физический маятник.
- •46. Затухающие колебания. Основные характеристики. Резонанс.
- •47. Волны. Виды волн. Уравнение стоячей волны.
- •48. Магнитное поле. Правило правого винта. Рамка с током ,вращающий момент. Силовые линии магнитного поля. Вектор магнитной индукции магнитного поля. Напряженность магнитного поля.
- •51. Движение заряженных частиц в магнитном поле. Сила Лоренца
20. Уравнение состояния идеального газа. Уравнение Менделеева-Клаперона.
pV = nRT *
Она содержит основные характеристики поведения газов: p, V и T — соответственно давление, объем и абсолютная температура газа (в градусах Кельвина), R — универсальная газовая постоянная, общая для всех газов, а n — число, пропорциональное числу молекул или атомов газа
уравнение состояния идеального газа, устанавливающее связь между его объемом V. давлением р и абс. температурой Т. Имеет вид:
pV=nRT.
где n - число молей газа, R = 8,31431 Дж/моль.К) - газовая постоянная. Для 1 моля газа pv=RT, где v-молярный объем. Клапейрона-Менделеева уравнение записывают также в форме: pV=NkT, где N - число частиц газа в объеме V, k - постоянная Больцмана.
Если М - масса газа, а m - его мол. масса, то pV=(M/m)RT. К.-М. у. приближенно выполняется для реальных газов при достаточно низких давлениях; с повышением температуры область давлений, при которых состояние реального газа можно описывать Клапейрона-Менделеева уравнением, расширяется. Для молекулярных газов (напр., атм. воздуха) при обычных температурах и давлениях до 1,01.105 Па (1 атм) Клапейрона-Менделеева уравнение выполняется достаточно точно. Клапейрона-Менделеева уравнение широко используют при расчетах термодинамич. свойств газов, определения работы, совершаемой системой в к.-л. процессе. Ассоциированные газы, например пары НСООН, СН3СООН, С3Н7СООН и др. карбоновых кислот, не подчиняются Клапейрона-Менделеева уравнению даже при очень низких давлениях.
Изопроцессы —
термодинамические
процессы,
во время которых количество вещества
и ещё одна из физических величин —
параметров состояния: давление,
объём
или температура —
остаются неизменными. Так, неизменному
давлению соответствует изобарный
процесс,
объёму — изохорный,
температуре — изотермический,
энтропии —
изоэнтропийный
(например, обратимый адиабатический
процесс).
Линии, изображающие данные процессы на
какой-либо термодинамической диаграмме,
называются изобара,
изохора,
изотерма
и адиабата
соответственно. Изопроцессы являются
частными с
Изобарный
процесс
(др.-греч. ισος, isos — «одинаковый» +
βαρος, baros — «вес») — процесс
изменения состояния термодинамической
системы при постоянном давлении (
)
Зависимость объёма газа от температуры при неизменном давлении была экспериментально исследована в 1802 году Жозефом Луи Гей-Люссаком. Закон Гей-Люссака: При постоянном давлении и неизменных значениях массы газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.
Изохорный процесс
Основная статья: Изохорный процесс
Изохорный
процесс
(от греч. хора — занимаемое место) —
процесс изменения состояния
термодинамической системы при постоянном
объёме (
).
Для идеальных газов изохорический
процесс описывается законом
Шарля:
для данной массы газа при постоянном
объёме, давление прямо пропорционально
температуре:
Линия, изображающая изохорный процесс на диаграмме, называется изохорой.
Ещё стоит указать что поданная к газу энергия расходуется на изменение внутренней энергии то есть Q = 3* ν*R*T/2=3*V*ΔP, где R — универсальная газовая постоянная, ν количество молей в газе, T температура в Кельвинах, V объём газа, ΔP приращение изменения давления. а линию, изображающая изохорный процесс на диаграмме, в осях Р(Т), стоит продлить и пунктиром соединить с началом координат, так как может возникнуть недопонимание.
Изотермический процесс
Основная статья: Изотермический процесс
Изотермический
процесс
(от греч. «термос» — тёплый, горячий) —
процесс изменения состояния
термодинамической системы при постоянной
температуре (
)(
).
Изотермический процесс описывается
законом
Бойля — Мариотта:
При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const. лучами политропного процесса.
23.Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.
Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:
где
—теплота
,
работа, совершаемая телом против внешних
сил, измеренная в джоулях
24. Количество теплоты. Работа в термодинамике. Работа газа при различных процессах.
Теплота представляет из себя форму беспорядоченного или хаотического движения частиц. Количественной мерой теплоты является количество теплоты.
Q – количество теплоты – количество внутренней энергии, получаемой или отдаваемой телом при теплопередаче. Сообщение теплоты не связано с перемещением тел, т.к. не связано с совершением механической работы. Внутренняя энергия изменяется за счёт совершения работы молекулы наиболее горячего тела над молекулами( больше) холодного тела.
Работа в термодинамике.В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела относительно друг друга. При совершении работы меняется объем тела, а его скорость остается раной нулю. Но скорости молекул тела меняются! Поэтому меняется температура тела. Причина в том, что при столкновении с движущимся поршнем (сжатие газа) кинетическая энергия молекул изменяется - поршень отдает часть своей механической энергии. При столкновении с удаляющимся поршнем (расширение) скорости молекул уменьшаются, газ охлаждается. При совершении работы в термодинамике меняется состояние макроскопических тел: их объем и температура.