Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
sociokulturnye_predposylki_vozniknoveniya_tehnicheskih_nauk.doc
Скачиваний:
3
Добавлен:
29.10.2019
Размер:
143.87 Кб
Скачать

2. Предпосылки становления технических наук

В качестве последующих исторически значимых этапов науки, определивших ее развитие и функции, можно выделить становление технических наук. Их становление как особых подсистем опытной науки (наряду с естествознанием) также имело свои социокультурные предпосылки. Оно происходило в эпоху вступления техногенной цивилизации в стадию индустриализма и знаменовало обретение наукой новых функций – быть производительной и социальной силой [5].

Что касается функций науки как непосредственной производи­тельной силы, то нам сегодня эти функции, пожалуй, пред­ставляются не только наиболее очевидными, но и первейшими, изначальными. И это понятно, если учитывать беспрецедентные масштабы и темпы современного научно-технического прогресса, результаты которого ощутимо проявляются во всех отраслях жизни и во всех сферах деятельности человека. Однако при историческом рассмотрении картина предстает в ином свете. Про­цесс превращения науки в непосредственную производительную силу впервые был зафиксирован и проанализирован К. Марксом в середине XIX столетия, когда синтез науки, техники и производства был не столько реальностью, сколько перспективой.

В период становления науки как социального института вызре­вали материальные предпосылки для осуществления такого синте­за, создавался необходимый для этого интеллектуальный климат, вырабатывался соответствующий строй мышления. Конечно, науч­ное знание и тогда не было изолировано от быстро развивавшейся техники, но связь между ними носила односторонний характер. Некоторые проблемы, возникавшие в ходе развития техники, стано­вились предметом научного исследования и даже давали начало новым научным дисциплинам. Так было, например, с гидравли­кой, с термодинамикой. Сама же наука мало что давала практи­ческой деятельности — промышленности, сельскому хозяйству, медицине. И дело было не только в недостаточном уровне разви­тия науки, но прежде всего в том, что сама практика, как правило, не умела, да и не испытывала потребности опираться на завое­вания науки или хотя бы просто систематически учитывать их. Вплоть до середины XIX века случаи, когда результаты науки находили практическое применение, были эпизодическими и не вели ко всеобщему осознанию и рациональному использованию тех богатейших возможностей, которые сулило практическое использование результатов научных исследований.

Со временем, однако, становилось очевидным, что сугубо эмпи­рическая основа слишком узка и ограниченна для того, чтобы обеспечить непрерывное развитие производительных сил, прогресс техники. И промышленники, и ученые начинали видеть в науке мощный катализатор процесса непрерывного совершенствования средств производственной деятельности. Осознание этого резко изменило отношение к науке и явилось существенной предпо­сылкой для ее решающего поворота в сторону практики, мате­риального производства. И здесь, как и в культурно-мировоз­зренческой сфере, наука недолго ограничивалась подчиненной ролью и довольно быстро выявила свой потенциал революцио­низирующей силы, в корне меняющей облик и характер произ­водства.

Важной стороной превращения науки в непосредственную производительную силу является создание и упрочение постоян­ных каналов для практического использования научных знаний, появление таких отраслей деятельности, как прикладные иссле­дования и разработки, создание сетей научно-технической инфор­мации и др. Причем вслед за промышленностью такие каналы возникают и в других отраслях материального производства и даже за его пределами. Все это влечет за собой значительные последствия и для науки, и для практики.

Если говорить о науке, то она прежде всего получает новый мощный импульс для своего развития, поскольку «применение науки к непосредственному производству само становится для нее одним из определяющих и побуждающих моментов». Со своей стороны, практика все более явно ориентируется на устойчивую и непрерывно расширяющуюся связь с наукой. Для современ­ного производства, да и не только для него, все более широкое применение научного знания выступает как обязательное условие самого существования и воспроизводства многих видов деятель­ности, возникших в свое время вне всякой связи с наукой, не говоря уже о тех, которые ею порождены.

Сегодня, в условиях научно-технической революции, у науки все более отчетливо обнаруживается еще одна группа функций — она начинает выступать и в качестве социальной силы, непо­средственно включаясь в процессы социального развития. Наибо­лее ярко это проявляется в тех довольно многочисленных в наши дни ситуациях, когда данные и методы науки используются для разработки масштабных планов и программ социального и эконо­мического развития. При составлении каждой такой программы, определяющей, как правило, цели деятельности многих пред­приятий, учреждений и организаций, принципиально необходимо непосредственное участие ученых как носителей специальных знаний и методов из разных областей. Существенно также, что ввиду комплексного характера подобных планов и программ их разработка и осуществление предполагают взаимодействие общест­венных, естественных и технических наук [8, 9].

Прак­ти­че­ски­ми пред­по­сыл­ка­ми фор­ми­ро­ва­ния тех­ни­че­ских на­ук яв­ля­ет­ся по­яв­ле­ние круп­но­го ма­шин­но­го про­из­вод­ст­ва, ко­то­рое тре­бо­ва­ло для сво­его раз­ви­тия и функ­цио­ни­ро­ва­ния соз­на­тель­но­го при­ме­не­ния на­уч­ных зна­ний. Ис­то­ри­че­ские фак­ты по­ка­зы­ва­ют, что тех­ни­че­ские нау­ки сфор­ми­ро­ва­лись в свя­зи с ус­лож­не­ни­ем тех­ни­че­ских средств про­из­вод­ст­ва в пе­ри­од ста­нов­ле­ния ма­шин и яви­лись сво­его ро­да ин­ст­ру­мен­том, су­ще­ст­вен­ным об­ра­зом, из­ме­нив­шим спо­соб кон­ст­руи­ро­ва­ния ма­шин.

Тео­ре­ти­че­ски­ми же пред­по­сыл­ка­ми фор­ми­ро­ва­ния тех­ни­че­ских на­ук яв­ля­ют­ся как раз­ви­тие на­уч­но-тех­ни­че­ско­го зна­ния, так и раз­ви­тие ес­те­ст­вен­ных на­ук и ма­те­ма­ти­ки в 19 ве­ке, осо­бе­нно ме­ха­ни­ки И.Нью­то­на [3].

К концу XVIII – началу XIX столетия наука окончательно становится бесспорной ценностью цивилизации. Она все активнее участвует в формировании мировоззрения, претендуя на достижение объективно истинного знания о мире, и вместе с тем все отчетливее обнаруживает прагматическую ценность, возможность постоянного и систематического внедрения в производство своих результатов, которые реализуются в виде новой техники и технологии. Примеры использования научных знаний в практике можно обнаружить и в предшествующие исторические периоды, что давало импульсы к осмыслению практической значимости науки. И все же использование результатов науки в производстве в доиндустриальные эпохи носило скорее эпизодический, чем системный характер.

В конце XVIII – первой половине XIX в. ситуация радикально меняется. К. Маркс справедливо отмечал, что «научный фактор впервые сознательно и широко развивается, применяется и вызывается в таких масштабах, о которых предшествующие эпохи не имели никакого понятия». Именно в этот исторический период начинается процесс интенсивного взаимодействия науки и техники и возникает особый тип социального развития, который принято называть научно-техническим прогрессом. Потребности практики все отчетливее обозначали тенденции к постепенному превращению науки в непосредственную производительную силу. Внедрение научных результатов в производство в расширяющихся масштабах становилось основной характеристикой социальной динамики, а идея социального прогресса все отчетливее связывалась с эффективным технологическим применением науки.

Важную роль в развитии науки, в частности в формировании новых отраслей знания, сыграло развитие крупной машинной индустрии, пришедшей на смену мануфактурному производству. Не случайно в тех странах, где капитализм приобретал более развитые формы, наука получила преимущества в развитии. Внедрение ее результатов в производство все чаще рассматривалось как условие получения прибыли производителями, как свидетельство силы и престижа государства.

Расширяющееся применение научных знаний в производстве сформировало общественную потребность в проявлении особого слоя исследований, который бы систематически обеспечивал приложение фундаментальных естественнонаучных теорий к области техники и технологии. Как выражение этой потребности между естественнонаучными дисциплинами и производством возникает своеобразный посредник – научно-теоретические исследования технических наук.

Их становление было обусловлено по меньшей мере двумя группами факторов. С одной стороны, они утверждались на базе экспериментальной науки, когда для формирования технической теории оказывалось необходимым наличие своей «базовой» естественнонаучной теории (во временном отношении это был период XVIII – XIX вв.). С другой стороны, потребность в научно-теоретическом техническом знании была инициирована практической необходимостью, когда при решении конкретных задач инженеры уже не могли опираться только на приобретенный опыт, а нуждались в научно-теоретическом обосновании создания искусственных объектов, которое невозможно осуществить не имея соответствующей технической теории, разрабатываемой в рамках технических наук.

Технические науки не являются простым продолжением естествознания, прикладными исследованиями, реализующими концептуальные разработки фундаментальных естественных наук. В развитой системе технических наук имеется свой слой как фундаментальных, так и прикладных знаний, и эта система имеет специфический предмет исследования. Таким предметом выступает техника и технология как особая сфера искусственного, создаваемого человеком и существующего только благодаря его деятельности [5].

Становление и развитие технических наук происходило параллельно с развитием соответствующих видов техники и технологических процессов. Теоретические знания конкретной технической науки отражают специфику устройств того или иного принципа действия и назначения. Однако объект изучения не противостоит технической теории как нечто, существующее по независимым от познавательной деятельности законам, лишь "открываемым" в технических науках. Развивающаяся техническая наука формирует систему адекватных ей технический устройств. Эмпирический базис технической науки - сфера проектирования технических устройств определенного типа - одновременно и сфера "претворения в жизнь" ее теоретических положений.

Действительно, технические объекты разрабатываются в инженерной деятельности в соответствии с теоретическими предписаниями технических наук. Так, некоторые параметры, входящие в уравнения теории при расчете поведения электрических систем в тех или иных режимах, являются заводскими характеристиками электрических машин, кабелей и т.п., даваемыми поставщиками соответствующего оборудования. Конкретные их величины обеспечиваются в ходе проектирования этих устройств. Методики производства испытаний заводской продукции зачастую - это закрепление в стандартных процедурах экспериментальных методов определения выделенных в теории показателей, характеризующих устройство и его работу. В определенном смысле технические устройства и с точки зрения их структурно-морфологических характеристик (формы, размеров, взаимного расположения частей, материала), и функционального назначения в системе (фильтры, компенсаторы, усилители и т.п.), характера протекающих в них процессов (синусоидальная форма кривой тока в электротехнике) являются воплощением теоретических конструктов технических наук.

Возникновение технических наук связано со становлением экспериментального естествознания и перестройкой технического мышления в социокультурном процессе изменения общественного сознания при переходе к капиталистической формации: происходит изменение способа видения технических объектов, открывающее путь к становлению технических наук "классического" типа. Технические объекты начинают рассматриваться не просто как целесообразно функционирующие структуры, но и как структуры, осуществляющие, использующие некоторый природный процесс. В технических науках "классического" типа принцип действия технического объекта дается на естественно научной основе, а конструкция рассматривается как способ его реализации. Таким образом, появляется научное техническое знание, в котором технические устройства описываются как естественно-искусственные образования. При этом выделяются характеристики трех типов: конструктивно-морфологические (характеризуют строение устройства), процессуальные (характеризуют протекающий в устройстве природный процесс, изучаемый естествознанием), функциональные (характеризуют устройство с точки зрения его работы в качестве средства целесообразной деятельности, элемента технической системы).

Исследование технических объектов приводит к формированию в технических науках специфических теоретических схем (связных совокупностей идеализированных объектов изучения), описывающих связи указанных характеристик для определенных классов технических устройств. Классические технические науки опираются на теоретические представления естественных наук. Причем базовая естественнонаучная теория может иметь феноменологический характер, но быть весьма полезной для технической теории в виду того, что для построения расчетных методов нужны прежде всего количественные зависимости, фиксируемые в математическом аппарате естественно научных теорий. Задача технических наук - дать эффективные методы проектирования и расчета инженерных объектов, режимов функционирования сложных технических систем.

В технических теориях их функционирование предстает как законообразный процесс. Эта работа в технических науках ни в коей мере не подменяет и не заменяет инженерной деятельности, самостоятельная задача которой - материальное воплощение технических идей и проектов в определенных условиях их технико-экономической целесообразности.

Таким образом, специфика знаний технических наук и исследовательской деятельности в них определяется прежде всего контекстом практических приложений. Ориентированность технических теорий на обслуживание расчетно-проектной инженерной деятельности выражается в том, что познавательная установка в технических науках подчинена проектной. Соотношение этих установок можно представить в формулировке "познать, чтобы сделать" [8, 10].

Возникновение технических наук было обусловлено также двумя встречными познавательными процессами, а именно:

1) использованием уже известных, открытых естественнонаучным знанием законов, теории и отдельных данных при изучении технических объектов и происходящих в них процессов;

2) обобщением результатов отдельных эмпирических наблюдений, а также фактов производственно-технического характера.

Процесс формирования результатов отдельных эмпирических наук протекал, в основном, двумя путями:

1) “отпочкованием” их от фундаментальных, естественнонаучных исследований в той их части, которая ставится на службу конкретной части инженерной практики;

2) становлением единой теоретической системы технического знания путем объединения ранее не связанных между собой знаний технического характера.

Из двух составляющих научно технического знания (предписаний к деятельности - технологических рецептов и описаний объектов деятельности - технических структур) наибольшее воздействие на процесс становления собственно теоретической части технического знания - технических наук оказала последняя. [4]

Первые образцы научно-технических знаний, связанных с применением открытых естествознанием законов при создании новых технологий и технических устройств, возникли уже на ранних стадиях развития естественных наук. Классическим примером может служить конструирование Х. Гюйгенсом механических часов. Гюйгенс опирается на открытые Галилеем законы падения тел, создает теорию колебания маятника, а затем воплощает эту теорию в созданном техническом устройстве. Причем между теоретическими знаниями механики (законом падения тел и законом колебания идеального маятника), с одной стороны, и реальной конструкцией маятниковых часов, с другой, Гюйгенс создает особый слой теоретического знания, в котором знания механики трансформируются с учетом технических требований создаваемой конструкции. Этот слой знаний (разработанная Гюйгенсом теория изохорного качания маятника как падения по циклоиде, обращенной вершиной вниз) можно интерпретировать в качестве одного из первых образцов локальной технической теории. Что же касается систематической разработки технических теорий, то она началась позднее, в эпоху становления и развития индустриального машинного производства. Его потребности, связанные с тиражированием и модификацией технических устройств, конструированием их новых видов и типов, стимулировали формирование и превращение инженерной деятельности в особую профессию, обслуживающую производство. В отличие от технического творчества в рамках ремесленного труда, эта деятельности ориентировала на систематическое применение научных знаний при решении технических задач [5].

Пока речь шла об отдельных изобретениях, проблем не возникало. Однако начиная с XVIII столетия складывается промышленное производство и потребность в тиражировании и модификации изобретенных инженерных устройств (парового котла и прядильных машин, станков, двигателей для пароходов и паровозов и т.д.). Резко возрастает объем расчетов и конструирования в силу того, что все чаще инженер имеет дело не только с разработкой принципиально нового инженерного объекта (т.е. изобретением), но и с созданием сходного (модифицированного) изделия (например, машина того же класса, но с другими характеристиками – иная мощность, скорость, габариты, вес, конструкция и т.д.). Другими словами, инженер теперь занят и созданием новых инженерных объектов, и разработкой целого класса инженерных объектов, сходных (однородных) с изобретенными. В познавательном отношении это означало появление не только новых проблем в связи с увеличившейся потребностью в расчетах и конструировании, но и новых возможностей. Разработка поля однородных инженерных объектов позволяла сводить одни случаи к другим, одни группы знаний к другим. Если первые образцы изобретенного объекта описывались с помощью знаний определенной естественной науки, то все последующие, модифицированные, сводились к первым образцам. В результате начинают выделяться (рефлексироваться) определенные группы естественнонаучных знаний и схем инженерных объектов, – те, которые объединяются самой процедурой сведения. Фактически это были первые знания и объекты технических наук, но существующие пока еще не в собственной форме: знания в виде сгруппированных естественнонаучных знаний, участвующих в сведениях, а объекты в виде схем инженерного объекта, к которым такие группы естественнонаучных знаний относились. На этот процесс накладывались два других: онтологизация и математизация.

Онтологизация представляет собой поэтапный процесс схематизации инженерных устройств, в ходе которого эти объекты разбивались на отдельные части и каждая замещалась "идеализированным представлением" (схемой, моделью). Подобные идеализированные представления вводились для того, чтобы к инженерному объекту можно было применить, с одной стороны, математические знания, с другой – естественнонаучные знания. По отношению к инженерному объекту такие представления являлись схематическими описаниями его строения (или строения его элементов), по отношению к естественной науке и математике они задавали определенные типы идеальных объектов (геометрические фигуры, векторы, алгебраические уравнения и т.д.; движение тела по наклонной плоскости, сложение сил и плоскостей, вращение тела и т.д.).

Замещение инженерного объекта математическими моделями было необходимо и само по себе как необходимое условие изобретения, конструирования и расчета и как стадия построения нужных для этих процедур идеальных объектов естественной науки. [7, 9]

Развитие инженерной деятельности в XIX и ХХ вв. привело к дифференциации ее функций, их выделению в относительно самостоятельные специализации: проектирование, конструирование, обслуживание технических устройств и технологических процессов. С развитием инженерной деятельности усложнялось научное техническое знание. В нем сформировались эмпирический и теоретический уровни; наряду с прикладными техническими теориями возникали фундаментальные. Их становление было стимулировано не только прогрессом естествознания, но прежде всего потребностями инженерной практики. Характерным примером в этом отношении может служить формирование теории машин и механизмов. Первые шаги к ее созданию были сделаны еще в эпоху первой промышленной революции и связаны с задачами конструирования относительно сложных машин (подъемных, паровых, ткацких, прядильных и т. д.). Их разработка основывалась на использовании в качестве базисных компонентов так называемых простых машин (блок, ворот, винт, рычаг и т. п.), исследование которых было важным исходным материалом открытия законов механики (программа Галилея). Но в процессе конструирования выяснилось, что работа большинства сложных машин предполагает преобразование движения с изменением его характера, направления и скорости. Поэтому главная проблема состояла не столько в выделении «простых машин» в качестве компонентов сложных, сколько в разработке теоретических схем их стыковки и преобразования присущих им типов движения. Потребности решения этой проблемы постепенно привели к созданию вначале отдельных теоретических моделей, а затем и фундаментальной теории машин и механизмов. Разработка последней была завершена в первой половине ХХ в. Характерной ее особенностью стало не только создание методов расчета существующих типов машин и механизмов, но и предсказание принципиально новых типов, еще не применявшихся в практике [5].