Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1filosofiya_i_metodologiya_nauki_metodologiya_nauki

.pdf
Скачиваний:
5
Добавлен:
29.10.2019
Размер:
2.13 Mб
Скачать

физика, встроив в свое основание понятие группы, отмечена превалированием рационального начала. Следует понять это, размышляя о структуре той первой математической физики, каковой является евклидова геометрия. Как верно сказал Жювэ: «Опыт показывает<…>чтоэтиперестановкинеизменяютгеометрическихфигур, но аксиоматика доказывает это фундаментальное положение»21. Доказательство важнее констатации.

Пока группа не связана с определенной аксиоматикой, нет уверенности,чтопоследняядействительнопредставляетсобойполный список постулатов. «Если некая группа представлена геометрией, ее аксиоматика непротиворечива в той мере, в какой не оспариваются теоремы Анализа. С другой стороны, аксиоматика некоторой геометрии будет полной лишь тогда, когда она действительно выступает как точное представление некоторой группы; коль скоро не найдена группа, которая является ее рациональной основой, эта аксиоматика неполна или, быть может, даже противоречива»22. Иначе говоря, группа представляет замкнутой математической системе доводы в пользу самой этой системы. Ее открытие приносит конец эре конвенций, более или менее независимых друг от друга, более или менее связанных друг с другом.

Физические инварианты, опирающиеся на структуру групп, придают, на наш взгляд, рациональное, а отнюдь не реалистское значение принципу преемственности, обнаруженному Э. Мейерсоном в основе физических явлений. Во всяком случае, именно здесь математизация реального в самом деле оказывается оправданной и образует процесс органической преемственности, на что указывал еще Жювэ: «В бурном потоке явлений, в постоянно меняющейся реальности физик усматривает преемственные связи; чтобы описать их, его ум конструирует геометрические структуры, разные формы кинематики, механические модели, аксиоматизация которых имеет целью уточнить <…> то, что за неимением подходящего термина мы назовем полезным пониманием различных понятий, формирование которых было связано с опытом и наблюдением. Если построенная таким образом аксиоматика есть представление группы, инварианты которой годятся для перевода, в реальность преемственностей, которые опыту предстоит открыть, то физическая теория свободна от противоречий и представляет собой образ реальности»23. Жювэ сближает соображения относительно групп с исследованиями Кюри относительно симметрий. Он заключает: здесь сразу перед нами и метод и экспликация.

21 Ju Vet G. Loc. cit. P. 164.

22 Ibid. P. 169.

23 Ibid P. 170.

— 31 —

III

Итак, абстрактные схемы – производные от аксиоматик и соответствующих групп – определяют структуру различных областей математической физики, и нужно вновь подняться до уровня групп, чтобы увидеть четко те отношения, в которых находятся друг к другу эти области математической физики. В частности, отдавать преимущество евклидовой геометрии здесь не более оправданно, чем отдавать преимущество группе перестановок. Ведь эта группа относительно бедна; не случайно она уступила свое место более богатым группам, более пригодным для того, чтобы дать рациональное описание тонкого опыта. Поэтому понятно, почему все отвергают мнение Пуанкаре, который считал евклидову геометрию наиболее удобной. Оказалось, что это не совсем так. Поразмыслив, можно не ограничиваться только советом быть поскромнее, предсказывая судьбы человеческого разума24. Очищая разум, можно прийти к настоящему перевороту ценностей в области рационального и увидеть, что абстрактное мышление в современной физике имеет определяющее значение. Напомним кратко позицию Пуанкаре и отметим новую черту эпистемологии по сравнению с этой частной точкой зрения.

Когда Пуанкаре доказывал логическую эквивалентность разных геометрий, он утверждал, что геометрия Евклида всегда будет считаться самой удобной и в случае ее конфликта с физическим опытом исследователи всегда будут предпочитать изменение физическойтеорииперестройкепринциповэлементарнойгеометрии. Так, Гаусс намеревался экспериментально проверить с помощью астрономических наблюдений одну из теорем неевклидовой геометрии, поставив перед собой следующий вопрос: действительно ли сумма углов треугольника, фиксируемого на звездах, т. е. имеющего гигантские размеры, обладает свойством уменьшаться, как это следует из геометрии Лобачевского. Пуанкаре не считал подобное измерение решающим экспериментом. Если он будет проведен, говорил он, то тогда можно будет сказать, что световой луч как физическая сущность подвергается искривлению, что он не распространяется в данном случае по прямой. Евклидова геометрия будет спасена в любом случае.

В главе, которую мы посвятим некартезианской эпистемологии, мы постараемся полнее охарактеризовать это мышление, прибегающее к аргументам об отклонениях, одну из попыток которого утвердить априорную ясность мы только что видели. В целом, такой способ мышления сводится к тому, чтобы представить в качестве неизменной перспективу интеллектуальной ясности,

24Ср.: Meyerson E. Du cheminement de la pensée. Paris, 1931. T. 1. P. 69

32 —

обрисовать дело так, что будто бы существует некоторая плоскость наиболее ясных мыслей, которая всегда выступает как первичная, что эта плоскость должна оставаться отправной базой для любых последующих исследований, что они могут появляться, только отправляясь от этой основы начальной ясности. Какой же метод должен быть присущ физической науке, если исходить из подобной эпистемологии? Нужно стремиться обрисовать опыт в его крупных чертах; подчинить феноменологию элементарной геометрии; обучать разум обращению с устойчивыми формами, не обращая внимания на уроки изменений. Лишь таким образом вся евклидовская инфраструктура, которая складывается в разуме, прочно увязывается с опытом обращения с твердыми телами, природными и искусственными. Лишь отталкиваясь от этой геометрической бессознательной основы, определяют затем отклонения, обнаруживаемые в физическом эксперименте.

Как об этом очень хорошо говорит Гонсет: «Ошибки и отклонения определены в намерении – в общем, несознаваемом – сделать всю систему измерений интерпретируемой с минимальными искажениями посредством геометрии Евклида»25.

Но является ли эта геометрическая структура, которая считается вечной характеристикой человеческого мышления, действительно определяющей? Отныне это можно отрицать, поскольку современная физика на деле конституирует себя, основываясь на неевклидовых схемах. Для этого требуется, чтобы физик подошел к новой области со всей независимостью разума, после того как евклидовы устремления подверглись психоаналитическому выявлению. Это новое учебное поле – микрофизика. Мы покажем в дальнейшем, что соответствующая ему эпистемология не является вещистской. Здесь же просто подчеркнем, что элементарный объект микрофизики не есть твердое тело. Электрические частицы, из которых образована вся материя, больше нельзя рассматривать в качестве настоящих твердых тел. И это не просто утверждение в духе реализма, которое имело бы не больше ценности, чем вещистское утверждение реалистски ориентированного атомизма. Из своей установки современный физик черпает глубокие доводы, весьма характерные для нового мышления, в пользу того, что электрическая частица, в сущности, не имеет формы твердого тела, поскольку при движении она деформируется. О ней судят – насколько это возможно – а основании математического преобразования, преоб - разования Лоренца, которое не принимает в расчет группу перестановок, свойственную евклидовой геометрии. Разумеется, геометрическая интерпретация физики электричества может

25Gonseth F. Les fondements des mathématiques. Paris, 1926. P. 101.

33 —

быть предпринята и на евклидовой почве. Для этого придется вообразить особое сжатие; но это абсолютно неэффективный путь, пустая трата времени, поскольку невозможно ясно представить в воображении сжатие того, что является сплошным. Лучше перевернуть перспективу видения ясности и судить о вещах как бы извне, исходя из математической необходимости,

окоторой говорит фундаментальная группа. Так, вместо того, чтобы в первую очередь думать о твердых неизменных телах, знакомых нам на основании грубого повседневного опыта и изученных в практике простых евклидовых перемещений, микрофизика занята тем, что думает о поведении элементарного объектавпрямомсогласиисзакономЛоренцовыхпреобразований. И кроме того, микрофизика принимает, в качестве частного случая, евклидово толкование явлений только в виде упрощаю - щей картины. В этом упрощенном образе она ясно видит искажения, неполноту, функциональную бедность. Психологически современный физик отдает себе отчет в том, что рациональные привычки, сформировавшиеся на основе нашего повседневного опыта и практической деятельности, по существу чреваты застойностью, которую и необходимо преодолеть, чтобы снова вернуться к движению духа, способного делать открытия.

Если вообще стоит придавать соображениям удобства какоето значение, то следовало бы сказать, что часто наиболее удоб - ной, наиболее экономной и наиболее ясной для интерпретации экспериментальных данных в области микрофизики является риманова геометрия. При этом речь не идет, разумеется,

одвух языках или двух образах и еще меньше – о двух видах пространственной реальности; речь идет о двух планах абстрактного мышления, двух различных системах рациональности, двух методах исследования. Путеводной нитью теоретической мысли является отныне группа. Вокруг некоторой математической группы можно всегда организовать экспериментирование. Именно этот факт дает представление о реализаторской ценности математической идеи. Старая диалектика евклидова и неевклидова подходов перемещается в более глубокую об - ласть физического опыта. Вся проблематика научного познания реального задается выбором некоей начальной математической структуры. Если хорошо понято (как это следует, например, из работ Гонсета26), что экспериментирование находится под воздействием некоей предварительной мыслительной конструкции, то именно в абстракции ищут доводы в пользу связности конкретного. Список возможностей опыта определяется аксиоматиками.

26 См.: Tам же. C. 104.

— 34 —

Таким образом, к психоматематической культуре приходят, воскрешая в памяти рождение неевклидовой геометрии, которая была первым случаем диверсификации аксиоматик.

Вопросы для самоподготовки:

1.Как неклассическая геометрия приходит к идее, что ни один объект не обладает заранее заданной сущностью?

2.Что значит «простое понятие» и «простой объект»?

3.Что такое «математическая реальность»?

4.Как возникает онтология «дополнительного»?

5.Что такое идея реальности, какова первичная метафизическая функция реального?

6.В чем «идея группы» и ее роль в формировании математической онтологии?

7.Есть ли какая-то преимущественная система отсчета в современной науке для построения онтологии?

8.Что является «реальностью» для современной науки?

Смолин Ли (06 июня 1955 г., Нью-Йорк, США) – американский физик-теоретик, профессор канадского университета Ватерлоо, ведущий сотрудник расположенного там же Института теоре-

тической физики (Perimeter Institute for Theoretical Physics). Изве-

стен пионерскими работами по теории струн,петлевой квантовой гравитации, а также в области космологии и теории элементарных частиц.

Работа американского физики Ли Смолина посвящена анализу методологических проблем современной физики. Выбор этой работы для учебного пособия по дисциплине «Философия и методология науки: методология науки» определяется, прежде всего, тем, что автор является не философом, а крупным современным ученым, что позволяет взглянуть на философские проблемы методологии науки «изнутри» самой науки. Ли Смолин констатирует наличие кризиса в современной физики. Этот кризис проявляется, прежде всего, в ее неспособности решить те проблемы, которые были поставлены в теоретической физике еще, примерно, 25 лет назад. Возникшие трудности заставляют физиков в очередной раз задумать о природе научного метода, и решить для себя вопрос позволяет ли существующая методология познать природу мира, в котором мы живем. Предложенная работа позволяет лучше понять, как современные ученые понимают природу науки, научного метода, как оценивают влияние социальных факторов на развитие науки.

Предложенная работа Ли Смолина посвящена анализу проблем развития современной физики.

— 35 —

СМОЛИН Л.

ПЯТЬ ВЕЛИКИХ ПРОБЛЕМ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ27

С самых ранних времен становления физики как науки находились люди, которые представляли себя последним поколением, сталкивающимся с неизвестным. Физика всегда казалась ее деятелям почти завершенной. Это самодовольство разбивается только во время революций, когда честные люди вынуждены признать, что они не знают основ. Но даже революционеры все еще представляют, что главная идея – та, что все объединит и приведет поиск знания к завершению, – лежит прямо за углом.

Мыживемводинизтакихреволюционныхпериодовужестолетие. Последним таким периодом была революция Коперника, возникшая в начале шестнадцатого века, во время которой аристотелевы теории пространства, времени, движения и космологии были низвергнуты. Кульминацией указанной революции было предложение Исааком Ньютоном новой теории физики, опубликованное

в1687 в его Математических Принципах Натуральной Философии. Сегодняшняя революция в физике началась в 1900 с открытием Максом Планком формулы, описывающей распределение энергии

вспектре теплового излучения, которая продемонстрировала, что энергия не непрерывна, но дискретна. Эта революция еще завершается. Проблемы, которые физики должны решать сегодня, являются, по большому счету, вопросами, которые остаются без ответа вследствие незавершенности научной революции двадцатого века.

Ядро нашей неспособности завершить текущую научную революцию состоит из пяти проблем, каждая из которых в высшей степени неподатлива. Эти проблемы противостояли нам, когда я начинал мои занятия физикой в 1970, и, хотя мы много узнали о них за последние три десятилетия, они остались нерешенными. Так или иначе, любая предлагаемая теория фундаментальной физики должна решить эти пять проблем, так что стоит бросить краткий взгляд на каждую.

Альберт Эйнштейн был, определенно, самым значительным физиком двадцатого столетия. Его величайшей работой, возможно, было его открытие общей теории относительности (ОТО), которая является лучшей из имеющихся у нас на сегодняшний день теорий пространства, времени, движения и гравитации. Его глубочайшим прозрением было то, что гравитация и движение тесно связаны друг с другом и с геометрией пространства и времени. Эта идея завершила сотни лет раздумий о природе пространства

27 Извлечение из кн.: Смолин Л. Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует / Пер. с англ. Ю. А. Артамонова. М.: Самиздат, 2007.

С. 3–18.

— 36 —

ивремени, которые до нее рассматривались как фиксированные

иабсолютные. Будучи вечными и неизменными, они обеспечивали фон, который мы использовали для определения таких понятий как положение и энергия.

ВОТО Эйнштейна пространство и время больше не обеспечивают фиксированного абсолютного фона. Пространство столь же динамично, как и материя, оно двигается и деформируется. В итоге пустая вселенная может расширяться или сокращаться, а время может даже начаться (в Большом Взрыве) и закончиться (в черной дыре).

Эйнштейн довел до конца и кое-что другое. Он был первым человеком, который понял необходимость новой теории материи и излучения. На самом деле необходимость перелома подразумевалась в формуле Планка, но Планк не понял этого достаточно глубоко, онполагал,чтоформулуможнобылобыпримиритьсньютоновской физикой. Эйнштейн думал иначе, и первое определенное обоснование такой теории он дал в 1905. Потребовалось еще двадцать лет, чтобы изобрести эту теорию, известную как квантовая теория.

Каждое из этих двух открытий, относительность и кванты, требует от нас определенного разрыва с ньютоновской физикой. Однако, несмотря на великий прогресс на протяжении века, они остались незавершенными. Каждое имеет дефекты, которые указывают на существование более глубокой теории. Но главная причина незавершенности каждого заключается в существовании другого.

Разум вызывает третью теорию для унификации всей физики, и по простой причине. Природа в очевидном смысле «едина». Вселенная, в которой мы сами находимся, находится во взаимосвязи, что означает, что все взаимодействует со всем прочим. Нет оснований, по которым мы могли бы иметь две теории природы, покрывающие различные явления, как если бы одна никогда не действовала вместе с другой. Все требует, чтобы конечная теория была полной теорией природы. Она должна включать в себя все, что мы знаем. Физика долгое время существовала без такой единой теории. Причина в том, что, говоря о подходящем эксперименте, мы были в состоянии разделить мир на две области. В атомной области, где правит квантовая физика, мы обычно можем игнорировать гравитацию. Мы можем трактовать пространство и время почти как это делал Ньютон – как неизменный фон.

Другая область является областью гравитации и космологии. В этом мире мы часто можем игнорировать квантовые явления.

Но это не может быть ничем другим, как временным, предварительным решением. Выйти за его пределы и является первой нерешенной проблемой в теоретической физике:

ПРОБЛЕМА 1:ОбъединитьОТОиквантовуютеориюводнутеорию, которая может претендовать на роль полной теории природы.

— 37 —

Это называется проблемой квантовой гравитации.

За пределами аргументов, основывающихся на единстве природы, имеются проблемы, специфические для каждой теории, которая требуетобъединениясдругой.Каждаятеорияимеетпроблемубесконечностей. В природе мы еще не столкнулись с чем-то измеримым, что имеет бесконечную величину. Но как в квантовой теории, так

ивобщейтеорииотносительностимысталкиваемсяспредсказаниями физически осмысленных величин, становящихся бесконечными. Это похоже на то, что природа таким путем наказывает нахальных теоретиков, которые осмелились разрушить ее единство.

ОТО имеет проблему с бесконечностями, поскольку внутри черной дыры плотность материи и напряженность гравитационного поля быстро становятся бесконечными. Это же проявляется

ив очень ранней истории вселенной – по меньшей мере, если мы доверяем общей теории относительности для описания ее младенчества. В точке, в которой плотность становится бесконечной, уравнения ОТО распадаются. Некоторые люди интерпретируют такое поведение как остановку времени, но более умеренный взгляд заключается в том, что теория просто неадекватна. В течение долгого времени умудренные люди рассуждали о том, что эта неадекватность происходит от пренебрежения эффектами квантовой физики.

Квантовая теория, в свою очередь, имеет свои собственные неприятности с бесконечностями. Они возникают всякий раз, когда вы пытаетесь использовать квантовую механику для описания полей, вроде электромагнитного поля. Проблема в том, что электрическое и магнитное поля имеют величину в каждой точке пространства.

Этоозначает,чтоимеетсябесконечноечислопеременных(даже в конечном объеме, где имеется бесконечное число точек, а отсюда бесконечное число переменных). В квантовой теории имеются неконтролируемые флуктуации в величинах каждой квантовой переменной. Бесконечное число неконтролируемо флуктуирующих переменных могут привести к уравнениям, которые «отбиваются от рук» и предсказывают бесконечные числа, когда вы задаете вопросы о вероятности наступления некоторого события или о величине некоторой силы.

Так что это является другим случаем, когда мы не можем помочь, но чувствуем, что существенная часть физики осталась за бортом. Долгое время была надежда, что, когда гравитация будет принята во внимание, флуктуации будут укрощены и все станет конечным. Если бесконечности являются знаком нарушения унификации, единая теория не будет их иметь. Это будет тем, что мы называем конечной теорией, теорией, которая отвечает на любой вопрос в терминах осмысленных, конечных чисел.

38 —

Квантовая механика была экстремально успешной в объяснении широчайшего круга явлений. Эта область простирается от излучения до свойств транзисторов и от физики элементарных частиц до действия ферментов и других больших молекул, которые являются строительными кирпичиками жизни. Ее предсказания подтверждались снова и снова в течение последнего столетия. Но некоторые физики всегда имели тревожные опасения по ее поводу, поскольку реальность, которую она описывает, столь эксцентрична. Квантовая теория содержит внутри себя некоторые очевидные концептуальные парадоксы, которые даже после восьмидесяти лет остаются неразрешенными. Электрон проявляется как волна и как частица. Так же ведет себя свет. Более того, теория дает только статистические предсказания субатомного поведения. Наша способность сделать что-нибудь лучшеэтогоограничиваетсяпринципомнеопределенности,который говорит нам, что мы не можем в одно и то же время измерить положение и импульс частицы. Теория производит только вероятности. Частица – например, электрон в атоме – может быть где угодно, пока мыеенеизмерим;нашенаблюдениевнекоторомсмыслеопределяет ее состояние. Все это указывает на то, что квантовая теория не рассказывает полную историю. В итоге, несмотря на ее успех, имеются многие эксперты, которые убеждены, что квантовая теория скрывает нечто существенное о природе, о чем нам нужно узнать.

Одна из проблем, которая с самого начала мучает теорию, заключается в вопросе о соотношении между реальностью и формализмом. Физики традиционно ожидают, что наука должна давать оценку реальности такой, какой она была бы в наше отсутствие. Физика должна быть больше, чем набор формул, которые предсказывают, что мы будем наблюдать в эксперименте; она должна давать картину того, какова реальность на самом деле. Мы являемся случайными потомками древних приматов, которые появились в истории мира лишь совсем недавно. Не может быть, что реальность зависит от нашего существования. Проблема отсутствия наблюдателей не может быть решена и путем обращения к возможности существования чужих цивилизаций, так как было время, когда мир существовал, но был слишком горячим и плотным, чтобы существовал организованный разум.

Философы называют такую точку зрения реализмом. Она может быть обобщена через высказывание, что «реальный мир не здесь» (RWOT – real world out there, сокращение, которое ис-

пользовал для его обозначения мой первый учитель философии) должен существовать независимо от нас. Отсюда следует, что термины, в которых наука описывает реальность, не могут включать любым существенным образом тот факт, что мы выбираем, измерять нам или не измерять.

— 39 —

Квантовая механика, по меньшей мере, в той форме, в которой она была впервые предложена, не подгоняется легко под реализм. Этопроисходитиз-затого,чтотеорияпредполагаетразделениепри- роды на две части. С одной стороны разделения имеется наблюдаемая система. Мы, наблюдатели, находимся с другой стороны. С нами имеются инструменты, которые мы используем при проведении экспериментов и осуществлении измерений, и часы, которые мы используем, чтобы записать, когда произошли те или иные вещи. Квантовая теория может описываться, если использовать новый вид языка, в диалоге между нами и системой, которую мы исследуем нашими инструментами. Этот квантовый язык содержит глаголы, которые обозначают наши приготовления и измерения, и существительные, которые обозначают, что затем наблюдается. Он ничего не говорит нам о том, как будет выглядеть мир в наше отсутствие.

Смомента первого предложения квантовой теории бушуют дебаты между теми, кто принимает такой путь подхода к науке,

итеми, кто отвергает его. Многие основатели квантовой механики, включая Эйнштейна, Эрвина Шредингера и Луи де Бройля, находили такой подход к физике отвратительным. Они были реалистами. Для них квантовая теория, независимо от того, насколько хорошо она работает, была неполной теорией, поскольку она не обеспечивала картину реальности в отсутствие нашего взаимодействия с ней. На другой стороне были Нильс Бор, Вернер Гейзенберг и многие другие. Вместо того, чтобы ужасаться, они принимали такой новый путь подхода к науке.

Стех пор реалисты добились некоторых успехов в обозначении непоследовательности существующей формулировки квантовой теории. Некоторые из этих очевидных непоследовательностей возникают вследствие того, что квантовая теория, если она универсальна, должна также описывать нас самих. При этом возникают проблемы из-за разделения мира, которое требуется, чтобы придать смысл квантовой теории. Одна трудность заключается в том, где вы должны провести разделительную линию, которая зависит от того, кто проводит наблюдение. Когда вы измеряете атом, вы

иваши инструменты находятся по одну сторону, а атом по другую сторону. Но допустим, что я наблюдаю за вашей работой через видеокамеру. Я настроился на вашу лабораторию. Я могу рассматривать всю вашу лабораторию – включая вас и ваши инструменты, точно так же, как и атомы, с которыми вы манипулируете, – как составные части одной системы, которую я наблюдаю. С другой стороны буду только я.

Следовательно, вы и я описываем две разные «системы». Ваша включает только атом. Моя включает вас, атом и все то, что вы используете для его исследования. То, что вы рассматриваете как

40 —