Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы. все разделы кроме 12.docx
Скачиваний:
286
Добавлен:
28.09.2019
Размер:
4.39 Mб
Скачать

87) Особенности электронного энергетического спектра неупорядоченных полупроводников

У молекул имеется большое число возбужденных электронных уровней, переходы между которыми сопровождаются изменением колебательной и вращательной энергии. В результате этого структура электронных спектров молекул существенно усложняется, поскольку:

  1. электронные переходы часто перекрываются;

2) не соблюдается правило отбора для колебательных переходов (отсутствует ограничение по v);

3) сохраняется правило отбора J = 0, 1 для разрешенных вращательных переходов.

Электронный спектр представляет собой серию колебательных полос, каждая из которых содержит десятки или сотни вращательных линий. Как правило, в молекулярных спектрах наблюдаются несколько электронных переходов в близкой инфракрасной, видимой и ультрафиолетовой областях. Например, в спектре молекулы иода (J2) имеется около 30 электронных переходов.

С появлением лазеров исследование электронных спектров молекул, особенно многоатомных, вышло на новый уровень. Перестраиваемое в широких пределах интенсивное лазерное излучение используется в спектроскопии высокого разрешения для точного определения молекулярных констант и потенциальных поверхностей. Лазеры с видимым, инфракрасным и микроволновым излучением применяются в экспериментах по двойному резонансу для исследования новых переходов.

88) Плотность состояний

Плотность состояний — величина, определяющая количество энергетических уровней в интервале энергий на единицу объёма в трёхмерном случае (на единицу площади — в двумерном случае). Является важным параметром в статистической физике и физике твёрдого тела. Термин может применяться к фотонам, электронам, квазичастицам в твёрдом теле и т. п. Применяется только для одночастичных задач, то есть для систем где можно пренебречь взаимодействием (невзаимодействующие частицы) или добавить взаимодействие в качестве возмущения (это приведёт к модификации плотности состояний).

Чтобы вычислять плотность состояний энергии для частицы, мы сначала вычислим плотность состояний в обратном пространстве (импульсное или k-пространство). Расстояние между состояниями задано граничными условиями. Для свободных электронов и фотонов в пределах ящика размера L, и для электронов в кристаллической решётке с размером решетки L используем периодические граничные условия Борна — фон Кармана. Используя волновую функцию свободной частицы получаем

где n — любое целое число, а — расстояние между состояниями с различными k.

Полное количество k-состояний, доступных для частицы - объем k-пространства доступного для неё, разделенного на объём k-пространства, занимаемого одним состоянием. Доступный объем - просто интеграл от к . Объём k-пространства для одного состояния в n-мерном случае запишется в виде

— вырождение уровня (обычно это спиновое вырождение равное 2). Это выражение нужно продифференцировать, чтобы найти плотность состояний в k-пространстве: . Чтобы найти плотность состояний по энергии нужно знать закон дисперсии для частицы, то есть выразить k и dk в выражении g(k)dk в терминах E и dE. Например для свободного электрона: ,

С более общим определением связано соотношение

где индекс s соответствует некоторому состоянию дискретного или непрерывного спектра, а — дельта-функция Дирака. При переходе от суммирования к интегрированию следут использовать правило

где — постоянная Планка.