
- •1) Электронная конфигурация внешних оболочек атомов и типы сил связи в твердых телах.
- •2) Структуры важнейших полупроводников - элементов aiv, avi и соединений типов аiiiвv, аiiвvi , аivвvi.
- •3) Симметрия кристаллов.
- •4)Трансляционная симметрия кристаллов.
- •5) Базис и кристаллическая структура.
- •6) Элементарная ячейка.
- •7) Примитивная ячейка.
- •8) Ячейка Вигнера—Зейтца. Решетка Браве.
- •Решетки Бравэ
- •9) Обозначения узлов, направлений и плоскостей в кристалле.
- •10) Обратная решетка, ее свойства.
- •11) Зона Бриллюэна.
- •Характерные точки зоны Бриллюэна
- •Интересные особенности
- •12) Примеси и структурные дефекты в кристаллических и аморфных полупроводниках.
- •13) Химическая природа и электронные свойства примесей.
- •14) Точечные, линейные и двумерные дефекты.
- •Источники и стоки точечных дефектов
- •Комплексы точечных дефектов
- •Одномерные дефекты
- •Двумерные дефекты
- •Трёхмерные дефекты
- •15) Методы выращивания объемных монокристаллов из жидкой фазы
- •16) Методы выращивания эпитаксиальных пленок (эпитаксия из жидкой и газовой фазы).
- •17) Молекулярно-лучевая эпитаксия.
- •18) Металлоорганическая эпитаксия
- •19) Методы легирования полупроводников
- •21) Основные приближения зонной теории.
- •22) Волновая функция электрона в периодическом поле кристалла.
- •23) Зона Бриллюэна.
- •24) Энергетические зоны.
- •25) Эффективная масса.
- •Эффективная масса для некоторых полупроводников
- •26) Плотность состояний.
- •Определение
- •27) Уравнения движения электронов и дырок во внешних полях.
- •28) Искривление энергетических зон в электрическом поле.
- •29) Связь зонной структуры с оптическими свойствами полупроводника.
- •30) Уровни энергии, создаваемые примесными центрами в полупроводниках.
- •31) Доноры и акцепторы.
- •32) Мелкие и глубокие уровни.
- •33) Водородоподобные примесные центры.
- •34) Функция распределения электронов.
- •35) Концентрация электронов и дырок в зонах, эффективная плотность состояний.
- •36) Невырожденный и вырожденный электронный (дырочный) газ.
- •37) Концентрации электронов и дырок на локальных уровнях.
- •38) Положение уровня Ферми и равновесная концентрация электронов и дырок в собственных и примесных (некомпенсированных и компенсированных) полупроводниках.
- •39) Многозарядные примесные центры.
- •40) Проводимость, постоянная Холла и термо-эдс. По характеру проводимости. Собственная проводимость
- •Примесная проводимость
- •Полупроводник p-типа
- •41) Дрейфовая скорость, дрейфовая и холловская подвижности, фактор Холла.
- •42) Дрейфовый и диффузионный ток.
- •43) Соотношение Эйнштейна.
- •44) Механизмы рассеяния носителей заряда в неидеальной решетке.
- •45) Взаимодействие носителей заряда с акустическими и оптическими фононами.
- •46) Рассеяние носителей заряда на заряженных и нейтральных примесях.
- •47) Генерация и рекомбинация неравновесных носителей заряда.
- •48)Уравнение кинетики рекомбинации.
- •49) Времена жизни.
- •50) Фотопроводимость.
- •51) Механизмы рекомбинации.
- •52) Излучательная и безызлучательная рекомбинация.
- •53) Межзонная рекомбинация.
- •54) Рекомбинация через уровни примесей и дефектов.
- •55) Центры прилипания.
- •57) Схема энергетических зон в контакте металл-полупроводник.
- •58) Обогащенные, обедненные и инверсионные слои пространственного заряда вблизи контакта.
- •59) Вольт-амперная характеристика барьера Шоттки.
- •60) Энергетическая диаграмма р-п перехода.
- •61) Инжекция неосновных носителей заряда в р-п переходе.
- •62) Гетеропереходы.
- •63) Энергетические диаграммы гетеропереходов.
- •64) Поверхностные состояния и поверхностные зоны.
- •Природа поверхностных состояний
- •Состояния Тамма
- •Состояния Шокли
- •Поверхностные состояния, обусловленные дефектами кристаллической решётки на поверхности
- •Пс примесного типа
- •Пс в слоистых структурах
- •Энергетический спектр пс
- •Зоны пс
- •Двумерные зоны
- •Одномерные зоны
- •Типы пс по времени релаксации
- •65) Искривление зон, распределение заряда и потенциала вблизи поверхности.
- •66) Поверхностная рекомбинация.
- •67) Межзонные переходы.
- •68) Край собственного поглощения в случае прямых и непрямых, разрешенных и запрещенных переходов.
- •69) Экситонное поглощение и излучение.
- •70) Спонтанное и вынужденное излучение.
- •Применение
- •Последние открытия
- •71) Поглощение света на свободных носителях заряда.
- •72) Поглощение света на колебаниях решетки.
- •73) Влияние примесей на оптические свойства.
- •74) Примесная структура оптических спектров вблизи края собственного поглощения в прямозонных и непрямозонных полупроводниках.
- •75) Межпримесная излучательная рекомбинация.
- •76) Экситоны, связанные на примесных центрах.
- •77) Эффект Бурштейна-Мосса.
- •78) Примесная и собственная фотопроводимость.
- •79) Влияние прилипания неравновесных носителей заряда на фотопроводимость.
- •4. В общем случае центры прилипания сложным образом изменяют как кинетику, так и стационарную величину фп.
- •80) Оптическая перезарядка локальных уровней и связанные с ней эффекты.
- •81) Термостимулированная проводимость.
- •82) Фотоэлектромагнитный эффект
- •83) Аморфные и стеклообразные полупроводники.
- •84) Структура атомной матрицы некристаллических полупроводников
- •85) Идеальное стекло.
- •86) Гидрированные аморфные полупроводники
- •87) Особенности электронного энергетического спектра неупорядоченных полупроводников
- •88) Плотность состояний
- •89) Локализация электронных состояний
- •90) Щель подвижности
- •91) Легирование некристаллических полупроводников
- •103) Вольтамперная характеристика р-п перехода.
- •104) Приборы с использованием р-п переходов.
- •105) Туннельный диод.
- •106) Диод Ганна.
- •107) Биполярный транзистор.
- •108) Тиристор.
- •109) Энергетическая диаграмма структуры металл-диэлектрик-полупроводник (мдп).
- •110) Полевые транзисторы на мдп-структурах.
- •111) Приборы с зарядовой связью.
- •112)Фотоэлементы и фотодиоды.
- •113) Спектральная чувствительность и обнаружительная способность.
- •114) Полупроводниковые детекторы ядерных излучений.
- •115)Фотоэлектрические преобразователи, кпд преобразования.
- •117) Инжекционные лазеры на основе двойной гетероструктуры.
- •118) Использование наноструктур в полупроводниковых приборах.
- •119) Гетеротранзистор с двумерным электронным газом (немт).
- •120) Гетеролазеры на основе структур с квантовыми ямами и квантовыми точками.
- •121) Резонансное туннелирование в двухбарьерной гетероструктуре и резонансно-туннельный диод.
- •122) Оптический модулятор на основе квантово-размерного эффекта Штарка.
87) Особенности электронного энергетического спектра неупорядоченных полупроводников
У молекул имеется большое число возбужденных электронных уровней, переходы между которыми сопровождаются изменением колебательной и вращательной энергии. В результате этого структура электронных спектров молекул существенно усложняется, поскольку:
электронные переходы часто перекрываются;
2) не соблюдается правило отбора для колебательных переходов (отсутствует ограничение по v);
3) сохраняется правило отбора J = 0, 1 для разрешенных вращательных переходов.
Электронный спектр представляет собой серию колебательных полос, каждая из которых содержит десятки или сотни вращательных линий. Как правило, в молекулярных спектрах наблюдаются несколько электронных переходов в близкой инфракрасной, видимой и ультрафиолетовой областях. Например, в спектре молекулы иода (J2) имеется около 30 электронных переходов.
С появлением лазеров исследование электронных спектров молекул, особенно многоатомных, вышло на новый уровень. Перестраиваемое в широких пределах интенсивное лазерное излучение используется в спектроскопии высокого разрешения для точного определения молекулярных констант и потенциальных поверхностей. Лазеры с видимым, инфракрасным и микроволновым излучением применяются в экспериментах по двойному резонансу для исследования новых переходов.
88) Плотность состояний
Плотность состояний — величина, определяющая количество энергетических уровней в интервале энергий на единицу объёма в трёхмерном случае (на единицу площади — в двумерном случае). Является важным параметром в статистической физике и физике твёрдого тела. Термин может применяться к фотонам, электронам, квазичастицам в твёрдом теле и т. п. Применяется только для одночастичных задач, то есть для систем где можно пренебречь взаимодействием (невзаимодействующие частицы) или добавить взаимодействие в качестве возмущения (это приведёт к модификации плотности состояний).
Чтобы вычислять плотность состояний энергии для частицы, мы сначала вычислим плотность состояний в обратном пространстве (импульсное или k-пространство). Расстояние между состояниями задано граничными условиями. Для свободных электронов и фотонов в пределах ящика размера L, и для электронов в кристаллической решётке с размером решетки L используем периодические граничные условия Борна — фон Кармана. Используя волновую функцию свободной частицы получаем
где n — любое целое число, а — расстояние между состояниями с различными k.
Полное количество k-состояний, доступных для частицы - объем k-пространства доступного для неё, разделенного на объём k-пространства, занимаемого одним состоянием. Доступный объем - просто интеграл от к . Объём k-пространства для одного состояния в n-мерном случае запишется в виде
— вырождение
уровня (обычно это спиновое вырождение
равное 2). Это выражение нужно
продифференцировать, чтобы найти
плотность состояний в k-пространстве:
.
Чтобы найти плотность состояний по
энергии нужно знать закон дисперсии
для частицы, то есть выразить k и dk в
выражении g(k)dk в терминах E и dE. Например
для свободного электрона: ,
С
более общим определением связано
соотношение
где индекс s соответствует некоторому состоянию дискретного или непрерывного спектра, а — дельта-функция Дирака. При переходе от суммирования к интегрированию следут использовать правило
где — постоянная Планка.