Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы. все разделы кроме 12.docx
Скачиваний:
275
Добавлен:
28.09.2019
Размер:
4.39 Mб
Скачать

Применение

На вынужденном излучении основан принцип работы квантовых усилителейлазеров и мазеров. В рабочем теле лазера путём накачки создаётся избыточное (по сравнению с термодинамическим ожиданием) количество атомов в верхнем энергетическом состоянии. Рабочее тело газового лазера находится в резонаторе (в простейшем случае — пара зеркал), создающем условия для накапливания фотонов с определённым направлением импульса. Первоначальные фотоны возникают за счёт спонтанного излучения, затем их поток лавинообразно усиливается благодаря вынужденному излучению. Лазеры обычно используются для генерации излучения, тогда как мазеры, работающие в области радиочастот, применяются также и для усиления.

Последние открытия

Британские ученые смогли замедлить испускание фотона при помощи «побочных продуктов», остающихся при изготовлении квантовых точек. Статья опубликована в журнале PhysicalReviewLetters. Ее основные положения приведены в пресс-релизе Университета Ворвика, сотрудники которого принимали участие в исследовании.

В своей работе физики «замедляли» свет, продлевая время жизни экситона. Экситон представляет собой квазичастицу, возникающую при выбивании электрона фотоном с его энергетического уровня на более высокий (говорят, что электрон переходит в возбужденное состояние). Электрон и образовавшаяся на его месте «дырка» оказываются связаны друг с другом посредством зарядовых взаимодействий. Когда электрон возвращается на прежний энергетический уровень, он занимает место «дырки», а выбивший его фотон испускается системой.

Экситоны могут иметь различную природу. В частности, пару электрон-«дырка» может содержать кольцеобразный фрагмент материала, образовавшийся при производстве квантовых точек — изолированных нанообъектов, свойства которых заметно отличаются от свойств более крупных кусков такого же состава.

Авторы работы показали, что воздействие на такой квантовый бублик определенной комбинацией электрических и магнитных полей способно существенно замедлить скорость возвращения электрона на место «дырки» и испускания фотона.

Авторы работы считают, что у разработанной ими технологии большое будущее. Например, задержка испускания света может помочь в создании компьютеров, в которых фотоны используются для передачи информации.

Рис. 1 Поглощение фотона.

Рис. 2  Вынужденное испускание фотона.

Рис. 3 Спонтанное испускание фотона.

71) Поглощение света на свободных носителях заряда.

Поглощение свободными носителями

Говоря «свободный носитель», мы имеем в виду носитель, который может свободно двигаться внутри зоны и реагировать на внешние воздействия [2]. Поглощение свободными носителями характеризуется монотонным, часто бесструктурным спектром, описываемым законом lp, где l = c/n— длина волны фотона, а р меняется в пределах от 1,5 до 3,5.

При поглощении фотона электрон совершает переход в состояние с большей энергией в пределах той же долины (рисунок 3.1). Такой переход требует дополнительного взаимодействия для того, чтобы выполнялся закон сохранения квазиимпульса.

Рисунок 3.1. Переход свободного электрона в зоне проводимости [2].

Изменение квазиимпульса можно обеспечить либо в результате взаимодействия с решеткой (фононы), либо путем рассеяния на ионизованных примесях.

Согласно теории Друде, описывающей колебания электрона в металле под действием периодического электрического поля, затухание должно увеличиваться пропорционально l2. В полупроводниках рассеяние акустическими фононами приводит к поглощению, меняющемуся как l1.5. Рассеяние на оптических фононах дает зависимость l2.5, тогда как рассеяние ионизованными примесями может дать зависимость l3 или l3.5, что связано с аппроксимациями, использованными при построении теории [2].

В общем случае реализуются все типы рассеяния и результирующий показатель поглощения af свободными носителями представляет собой сумму трех членов

af = Al1.5 + Bl2.5 + Сl3.5,                                                               (3.1)

где А, В и С — константы. В зависимости от концентрации примесей тот или иной механизм рассеяния будет доминирующим. Показатель р в зависимости lp должен возрастать с увеличением легирования или степени компенсации.

В таблице 3.1 приведены значения р и сечения поглощения a/N для различных соединений [2].

Таблица 3.1. Поглощение свободными носителями в соединениях n-типа.

Соединение

Концентрация носителей, 1017 см

a/N *, 10-17 см-2

р

GaAs

1-5

3

3

InAs

0,3-8

4,7

3

GaSb

0,5

6

3,5

InSb

1-3

2,3

2

InP

0,4-4

4

2,5

GaP

10

(32)

(1,8)

Ge

0,5—5

~ 4

~ 2

* Отношение показателя поглощения к концентрации свободных носителей af /N приведено для длины волны 9 мкм. Параметр р определяет зависимость поглощения от длины волны в приближении af ~ lр.

Классическая формула для показателя поглощения свободными носителями af имеет вид

                                                                                (3.2)

где N — концентрация носителей, п — коэффициент преломления, а t — время релаксации. Отметим, что t учитывает влияние рассеяния. Таким образом, следует ожидать, что вероятность рассеяния ионизованными примесями будет зависеть от природы примеси. Такая зависимость показателя поглощения от химической природы примеси была обнаружена в германии n-типа, где при данной длине волны

af (As) >af (P) >af (Sb),

и в GaAs, где также при фиксированной длине волны

af (S) >af (Se) >af (Te).

Далее, время релаксации зависит от концентрации рассеивающих центров. Поэтому при сильном легировании показатель af не должен быть просто пропорциональным N, как записано в формуле (3.2). На рисунке 3.2 видно, что в германии, легированном сурьмой, показатель af пропорционален N3/2. Поскольку эффективная масса постоянна в этой области концентраций, то из формулы (3.2) следует, что t пропорционально N‑1/2.

Рисунок 3.2. Поглощение свободными носителями в Ge (Т = 4,2 К) при 2,4 мкм.