- •1) Электронная конфигурация внешних оболочек атомов и типы сил связи в твердых телах.
- •2) Структуры важнейших полупроводников - элементов aiv, avi и соединений типов аiiiвv, аiiвvi , аivвvi.
- •3) Симметрия кристаллов.
- •4)Трансляционная симметрия кристаллов.
- •5) Базис и кристаллическая структура.
- •6) Элементарная ячейка.
- •7) Примитивная ячейка.
- •8) Ячейка Вигнера—Зейтца. Решетка Браве.
- •Решетки Бравэ
- •9) Обозначения узлов, направлений и плоскостей в кристалле.
- •10) Обратная решетка, ее свойства.
- •11) Зона Бриллюэна.
- •Характерные точки зоны Бриллюэна
- •Интересные особенности
- •12) Примеси и структурные дефекты в кристаллических и аморфных полупроводниках.
- •13) Химическая природа и электронные свойства примесей.
- •14) Точечные, линейные и двумерные дефекты.
- •Источники и стоки точечных дефектов
- •Комплексы точечных дефектов
- •Одномерные дефекты
- •Двумерные дефекты
- •Трёхмерные дефекты
- •15) Методы выращивания объемных монокристаллов из жидкой фазы
- •16) Методы выращивания эпитаксиальных пленок (эпитаксия из жидкой и газовой фазы).
- •17) Молекулярно-лучевая эпитаксия.
- •18) Металлоорганическая эпитаксия
- •19) Методы легирования полупроводников
- •21) Основные приближения зонной теории.
- •22) Волновая функция электрона в периодическом поле кристалла.
- •23) Зона Бриллюэна.
- •24) Энергетические зоны.
- •25) Эффективная масса.
- •Эффективная масса для некоторых полупроводников
- •26) Плотность состояний.
- •Определение
- •27) Уравнения движения электронов и дырок во внешних полях.
- •28) Искривление энергетических зон в электрическом поле.
- •29) Связь зонной структуры с оптическими свойствами полупроводника.
- •30) Уровни энергии, создаваемые примесными центрами в полупроводниках.
- •31) Доноры и акцепторы.
- •32) Мелкие и глубокие уровни.
- •33) Водородоподобные примесные центры.
- •34) Функция распределения электронов.
- •35) Концентрация электронов и дырок в зонах, эффективная плотность состояний.
- •36) Невырожденный и вырожденный электронный (дырочный) газ.
- •37) Концентрации электронов и дырок на локальных уровнях.
- •38) Положение уровня Ферми и равновесная концентрация электронов и дырок в собственных и примесных (некомпенсированных и компенсированных) полупроводниках.
- •39) Многозарядные примесные центры.
- •40) Проводимость, постоянная Холла и термо-эдс. По характеру проводимости. Собственная проводимость
- •Примесная проводимость
- •Полупроводник p-типа
- •41) Дрейфовая скорость, дрейфовая и холловская подвижности, фактор Холла.
- •42) Дрейфовый и диффузионный ток.
- •43) Соотношение Эйнштейна.
- •44) Механизмы рассеяния носителей заряда в неидеальной решетке.
- •45) Взаимодействие носителей заряда с акустическими и оптическими фононами.
- •46) Рассеяние носителей заряда на заряженных и нейтральных примесях.
- •47) Генерация и рекомбинация неравновесных носителей заряда.
- •48)Уравнение кинетики рекомбинации.
- •49) Времена жизни.
- •50) Фотопроводимость.
- •51) Механизмы рекомбинации.
- •52) Излучательная и безызлучательная рекомбинация.
- •53) Межзонная рекомбинация.
- •54) Рекомбинация через уровни примесей и дефектов.
- •55) Центры прилипания.
- •57) Схема энергетических зон в контакте металл-полупроводник.
- •58) Обогащенные, обедненные и инверсионные слои пространственного заряда вблизи контакта.
- •59) Вольт-амперная характеристика барьера Шоттки.
- •60) Энергетическая диаграмма р-п перехода.
- •61) Инжекция неосновных носителей заряда в р-п переходе.
- •62) Гетеропереходы.
- •63) Энергетические диаграммы гетеропереходов.
- •64) Поверхностные состояния и поверхностные зоны.
- •Природа поверхностных состояний
- •Состояния Тамма
- •Состояния Шокли
- •Поверхностные состояния, обусловленные дефектами кристаллической решётки на поверхности
- •Пс примесного типа
- •Пс в слоистых структурах
- •Энергетический спектр пс
- •Зоны пс
- •Двумерные зоны
- •Одномерные зоны
- •Типы пс по времени релаксации
- •65) Искривление зон, распределение заряда и потенциала вблизи поверхности.
- •66) Поверхностная рекомбинация.
- •67) Межзонные переходы.
- •68) Край собственного поглощения в случае прямых и непрямых, разрешенных и запрещенных переходов.
- •69) Экситонное поглощение и излучение.
- •70) Спонтанное и вынужденное излучение.
- •Применение
- •Последние открытия
- •71) Поглощение света на свободных носителях заряда.
- •72) Поглощение света на колебаниях решетки.
- •73) Влияние примесей на оптические свойства.
- •74) Примесная структура оптических спектров вблизи края собственного поглощения в прямозонных и непрямозонных полупроводниках.
- •75) Межпримесная излучательная рекомбинация.
- •76) Экситоны, связанные на примесных центрах.
- •77) Эффект Бурштейна-Мосса.
- •78) Примесная и собственная фотопроводимость.
- •79) Влияние прилипания неравновесных носителей заряда на фотопроводимость.
- •4. В общем случае центры прилипания сложным образом изменяют как кинетику, так и стационарную величину фп.
- •80) Оптическая перезарядка локальных уровней и связанные с ней эффекты.
- •81) Термостимулированная проводимость.
- •82) Фотоэлектромагнитный эффект
- •83) Аморфные и стеклообразные полупроводники.
- •84) Структура атомной матрицы некристаллических полупроводников
- •85) Идеальное стекло.
- •86) Гидрированные аморфные полупроводники
- •87) Особенности электронного энергетического спектра неупорядоченных полупроводников
- •88) Плотность состояний
- •89) Локализация электронных состояний
- •90) Щель подвижности
- •91) Легирование некристаллических полупроводников
- •103) Вольтамперная характеристика р-п перехода.
- •104) Приборы с использованием р-п переходов.
- •105) Туннельный диод.
- •106) Диод Ганна.
- •107) Биполярный транзистор.
- •108) Тиристор.
- •109) Энергетическая диаграмма структуры металл-диэлектрик-полупроводник (мдп).
- •110) Полевые транзисторы на мдп-структурах.
- •111) Приборы с зарядовой связью.
- •112)Фотоэлементы и фотодиоды.
- •113) Спектральная чувствительность и обнаружительная способность.
- •114) Полупроводниковые детекторы ядерных излучений.
- •115)Фотоэлектрические преобразователи, кпд преобразования.
- •117) Инжекционные лазеры на основе двойной гетероструктуры.
- •118) Использование наноструктур в полупроводниковых приборах.
- •119) Гетеротранзистор с двумерным электронным газом (немт).
- •120) Гетеролазеры на основе структур с квантовыми ямами и квантовыми точками.
- •121) Резонансное туннелирование в двухбарьерной гетероструктуре и резонансно-туннельный диод.
- •122) Оптический модулятор на основе квантово-размерного эффекта Штарка.
36) Невырожденный и вырожденный электронный (дырочный) газ.
Для собственного полупроводника уравнение электронейтральности приобретает вид p – n = 0 или p = n. Если ширина запрещенной зоны полупроводника достаточно велика (Eg много больше kBT) и если эффективные массы электронов mn и дырок mp одного порядка, то уровень Ферми будет достаточно удален от краев зон (EC – F > 2kBT и F – EV > 2kBT), и полупроводник будет невырожденным.
Приравнивая значения концентраций электронов и дырок из соотношений (10.15) и (10.18), получаем
|
(10.27) |
Отсюда
вычисляем значение энергии Ферми F.
Уравнение (10.27) – уравнение первого
порядка относительно
.
Решение уравнения (10.27) дает выражение
для энергии Ферми
|
(10.28) |
|
|
где
через
обозначена энергия середины запрещенной
зоны.
При выводе в правом выражении для энергии Ферми F отношение эффективных плотностей состояний (NC/NV) была заменена на отношение эффективных масс (mn/mp) с использованием уравнения (10.16).
Для случая mn* = mp* энергия Ферми в собственном полупроводнике находится посреди запрещенной зоны
|
(10.29) |
Если известны концентрации носителей заряда n и p в зонах, то значение энергии Ферми F можно определить из формул (10.15) и (10.18). Так, для невырожденного полупроводника n‑типа имеем:
|
(10.30) |
Аналогично для невырожденного полупроводника p‑типа
|
(10.31) |
Из выражений (10.30, 10.31) видно, что чем больше концентрация основных носителей, тем ближе уровень Ферми к краю соответствующей зоны (рис. 10.12). Для донорного полупроводника в случае полной ионизации примеси концентрация электронов равна концентрации донорной примеси n0 = ND. Тогда
|
(10.32) |
Для акцепторного полупроводника концентрация дырок равна концентрации акцепторной примеси p0 = NA (10.24), тогда
|
(10.33) |
|
|
Как
уже отмечалось, вырожденный и невырожденный
электронный газ описывается соответственно
статистикой Ферми−Дирака и Больцмана.
Квантовая статистика переходит в
классическую, если энергия состояния:
.
Следовательно, вырождение в полупроводнике
наступает тогда, когда энергия Ферми F
приближается к дну зоны проводимости
или к потолку валентной зоны на расстояние
порядка kВT,
т. е. для полупроводника p-типа:
F – EV = kВТ.
В случае полной ионизации примеси в
акцепторном полупроводнике концентрация
дырок p
определяется как
|
(10.34) |
|
Рис. 10.12. Зависимость энергии Ферми F от концентрации свободных носителей в кремнии [9] |
Отсюда
следует критерий вырождения электронного
газа: по мере роста концентрации
свободных носителей (по мере роста
легирующей примеси) полупроводник
становится вырожденным, если концентрация
свободных носителей сравняется с
эффективной плотностью состояний.
Более точно, с учетом соотношения
E –
|
|

.
.
.
.