
- •1) Электронная конфигурация внешних оболочек атомов и типы сил связи в твердых телах.
- •2) Структуры важнейших полупроводников - элементов aiv, avi и соединений типов аiiiвv, аiiвvi , аivвvi.
- •3) Симметрия кристаллов.
- •4)Трансляционная симметрия кристаллов.
- •5) Базис и кристаллическая структура.
- •6) Элементарная ячейка.
- •7) Примитивная ячейка.
- •8) Ячейка Вигнера—Зейтца. Решетка Браве.
- •Решетки Бравэ
- •9) Обозначения узлов, направлений и плоскостей в кристалле.
- •10) Обратная решетка, ее свойства.
- •11) Зона Бриллюэна.
- •Характерные точки зоны Бриллюэна
- •Интересные особенности
- •12) Примеси и структурные дефекты в кристаллических и аморфных полупроводниках.
- •13) Химическая природа и электронные свойства примесей.
- •14) Точечные, линейные и двумерные дефекты.
- •Источники и стоки точечных дефектов
- •Комплексы точечных дефектов
- •Одномерные дефекты
- •Двумерные дефекты
- •Трёхмерные дефекты
- •15) Методы выращивания объемных монокристаллов из жидкой фазы
- •16) Методы выращивания эпитаксиальных пленок (эпитаксия из жидкой и газовой фазы).
- •17) Молекулярно-лучевая эпитаксия.
- •18) Металлоорганическая эпитаксия
- •19) Методы легирования полупроводников
- •21) Основные приближения зонной теории.
- •22) Волновая функция электрона в периодическом поле кристалла.
- •23) Зона Бриллюэна.
- •24) Энергетические зоны.
- •25) Эффективная масса.
- •Эффективная масса для некоторых полупроводников
- •26) Плотность состояний.
- •Определение
- •27) Уравнения движения электронов и дырок во внешних полях.
- •28) Искривление энергетических зон в электрическом поле.
- •29) Связь зонной структуры с оптическими свойствами полупроводника.
- •30) Уровни энергии, создаваемые примесными центрами в полупроводниках.
- •31) Доноры и акцепторы.
- •32) Мелкие и глубокие уровни.
- •33) Водородоподобные примесные центры.
- •34) Функция распределения электронов.
- •35) Концентрация электронов и дырок в зонах, эффективная плотность состояний.
- •36) Невырожденный и вырожденный электронный (дырочный) газ.
- •37) Концентрации электронов и дырок на локальных уровнях.
- •38) Положение уровня Ферми и равновесная концентрация электронов и дырок в собственных и примесных (некомпенсированных и компенсированных) полупроводниках.
- •39) Многозарядные примесные центры.
- •40) Проводимость, постоянная Холла и термо-эдс. По характеру проводимости. Собственная проводимость
- •Примесная проводимость
- •Полупроводник p-типа
- •41) Дрейфовая скорость, дрейфовая и холловская подвижности, фактор Холла.
- •42) Дрейфовый и диффузионный ток.
- •43) Соотношение Эйнштейна.
- •44) Механизмы рассеяния носителей заряда в неидеальной решетке.
- •45) Взаимодействие носителей заряда с акустическими и оптическими фононами.
- •46) Рассеяние носителей заряда на заряженных и нейтральных примесях.
- •47) Генерация и рекомбинация неравновесных носителей заряда.
- •48)Уравнение кинетики рекомбинации.
- •49) Времена жизни.
- •50) Фотопроводимость.
- •51) Механизмы рекомбинации.
- •52) Излучательная и безызлучательная рекомбинация.
- •53) Межзонная рекомбинация.
- •54) Рекомбинация через уровни примесей и дефектов.
- •55) Центры прилипания.
- •57) Схема энергетических зон в контакте металл-полупроводник.
- •58) Обогащенные, обедненные и инверсионные слои пространственного заряда вблизи контакта.
- •59) Вольт-амперная характеристика барьера Шоттки.
- •60) Энергетическая диаграмма р-п перехода.
- •61) Инжекция неосновных носителей заряда в р-п переходе.
- •62) Гетеропереходы.
- •63) Энергетические диаграммы гетеропереходов.
- •64) Поверхностные состояния и поверхностные зоны.
- •Природа поверхностных состояний
- •Состояния Тамма
- •Состояния Шокли
- •Поверхностные состояния, обусловленные дефектами кристаллической решётки на поверхности
- •Пс примесного типа
- •Пс в слоистых структурах
- •Энергетический спектр пс
- •Зоны пс
- •Двумерные зоны
- •Одномерные зоны
- •Типы пс по времени релаксации
- •65) Искривление зон, распределение заряда и потенциала вблизи поверхности.
- •66) Поверхностная рекомбинация.
- •67) Межзонные переходы.
- •68) Край собственного поглощения в случае прямых и непрямых, разрешенных и запрещенных переходов.
- •69) Экситонное поглощение и излучение.
- •70) Спонтанное и вынужденное излучение.
- •Применение
- •Последние открытия
- •71) Поглощение света на свободных носителях заряда.
- •72) Поглощение света на колебаниях решетки.
- •73) Влияние примесей на оптические свойства.
- •74) Примесная структура оптических спектров вблизи края собственного поглощения в прямозонных и непрямозонных полупроводниках.
- •75) Межпримесная излучательная рекомбинация.
- •76) Экситоны, связанные на примесных центрах.
- •77) Эффект Бурштейна-Мосса.
- •78) Примесная и собственная фотопроводимость.
- •79) Влияние прилипания неравновесных носителей заряда на фотопроводимость.
- •4. В общем случае центры прилипания сложным образом изменяют как кинетику, так и стационарную величину фп.
- •80) Оптическая перезарядка локальных уровней и связанные с ней эффекты.
- •81) Термостимулированная проводимость.
- •82) Фотоэлектромагнитный эффект
- •83) Аморфные и стеклообразные полупроводники.
- •84) Структура атомной матрицы некристаллических полупроводников
- •85) Идеальное стекло.
- •86) Гидрированные аморфные полупроводники
- •87) Особенности электронного энергетического спектра неупорядоченных полупроводников
- •88) Плотность состояний
- •89) Локализация электронных состояний
- •90) Щель подвижности
- •91) Легирование некристаллических полупроводников
- •103) Вольтамперная характеристика р-п перехода.
- •104) Приборы с использованием р-п переходов.
- •105) Туннельный диод.
- •106) Диод Ганна.
- •107) Биполярный транзистор.
- •108) Тиристор.
- •109) Энергетическая диаграмма структуры металл-диэлектрик-полупроводник (мдп).
- •110) Полевые транзисторы на мдп-структурах.
- •111) Приборы с зарядовой связью.
- •112)Фотоэлементы и фотодиоды.
- •113) Спектральная чувствительность и обнаружительная способность.
- •114) Полупроводниковые детекторы ядерных излучений.
- •115)Фотоэлектрические преобразователи, кпд преобразования.
- •117) Инжекционные лазеры на основе двойной гетероструктуры.
- •118) Использование наноструктур в полупроводниковых приборах.
- •119) Гетеротранзистор с двумерным электронным газом (немт).
- •120) Гетеролазеры на основе структур с квантовыми ямами и квантовыми точками.
- •121) Резонансное туннелирование в двухбарьерной гетероструктуре и резонансно-туннельный диод.
- •122) Оптический модулятор на основе квантово-размерного эффекта Штарка.
Определение
Чтобы вычислять плотность состояний энергии для частицы, мы сначала вычислим плотность состояний в обратном пространстве (импульсное или k-пространство). Расстояние между состояниями задано граничными условиями. Для свободных электронов и фотонов в пределах ящика размера L, и для электронов в кристаллической решётке с размером решетки L используем периодические граничные условия Борна — фон Кармана. Используя волновую функцию свободной частицы получаем
где
n — любое целое число, а
—
расстояние между состояниями с различными
k.
Полное
количество k-состояний, доступных для
частицы - объем k-пространства доступного
для неё, разделенного на объём
k-пространства, занимаемого одним
состоянием. Доступный объем - просто
интеграл от
к
.
Объём k-пространства для одного состояния
в n-мерном случае запишется в виде
—
вырождение
уровня (обычно это спиновое вырождение
равное 2). Это выражение нужно
продифференцировать, чтобы найти
плотность состояний в k-пространстве:
.
Чтобы найти плотность состояний по
энергии нужно знать закон дисперсии
для частицы, то есть выразить k и dk
в выражении g(k)dk в терминах E и
dE. Например для свободного электрона:
,
С более общим определением связано соотношение
где
индекс s соответствует некоторому
состоянию дискретного или непрерывного
спектра, а
—
дельта-функция
Дирака. При переходе от
суммирования к интегрированию следут
использовать правило
где
—
постоянная
Планка.
В следующей таблице представлены плотность состояний для электронов с параболическим законом дисперсии
|
Доступный объём |
Объём для одного состояния |
Плотность состояний |
33D |
|
|
|
22D |
|
|
|
11D |
|
|
|
00D |
|
|
|
где l — индекс подзоны размерного квантования. Здесь рассмотрен не чистый случай, а когда квантование по одному или нескольким направлениям связано с некоторым ограничивающим потенциалом.
27) Уравнения движения электронов и дырок во внешних полях.
дикулярной магнитному полю. Угловая скорость этого вращения равна ωс.
28) Искривление энергетических зон в электрическом поле.
29) Связь зонной структуры с оптическими свойствами полупроводника.
Поглощение
света полупроводниками обусловлено
переходами между энергетическими
состояниями зонной структуры. Учитывая
принцип
запрета Паули, электроны могут
переходить только из заполненного
энергетического уровня на незаполненный.
В собственном полупроводнике все
состояния валентной
зоны заполнены, а все состояния
зоны проводимости незаполненные, поэтому
переходы возможны лишь из валентной
зоны в зону
проводимости. Для осуществления
такого перехода электрон должен получить
от света энергию, превышающую ширину
запрещённой зоны. Фотоны
с меньшей энергией не вызывают переходов
между электронными состояниями
полупроводника, поэтому такие
полупроводники прозрачны в области
частот
,
где
—
ширина запрещённой зоны,
—
постоянная
Планка. Эта частота определяет
фундаментальный
край поглощения для
полупроводника. Для полупроводников,
которые зачастую применяются в электронике
(кремний,
германий,
арсенид
галлия) она лежит в инфракрасной
области спектра.
Дополнительные
ограничения на поглощение света
полупроводников накладывают правила
отбора, в частности закон
сохранения импульса. Закон
сохранения импульса требует, чтобы
квазиимпульс
конечного состояния отличался от
квазиимпульса начального состояния на
величину импульса
поглощённого фотона. Волновое
число фотона
,
где
—
длина волны, очень мало по сравнению с
волновым вектором
обратной решётки полупроводника,
или, что то же самое, длина волны фотона
в видимой области намного больше
характерного межатомного расстояния
в полупроводнике, что приводит к
требованию того, чтобы квазиимпульс
конечного состояния при электронном
переходе практически равнялся
квазиимпульсу начального состояния.
При частотах, близких к фундаментальному
краю поглощения, это возможно только
для прямозонных
полупроводников. Оптические
переходы в полупроводниках, при которых
импульс электрона почти не меняется
называются прямыми или вертикальными.
Импульс конечного состояния может
значительно отличаться от импульса
начального состояния, если в процессе
поглощения фотона участвует ещё одна,
третья частица, например, фонон.
Такие переходы тоже возможны, хотя и
менее вероятны. Они называются непрямыми
переходами.
Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.
Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.
При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.
При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.