
- •Структурно-функціональна організація апаратного та програмного забезпечення обчислювачів.
- •1.4 Структура аом
- •1.5 Структура гом
- •Системи машинних команд процесорів, формати даних і способи кодування команд і даних.
- •Способи організації доступу до даних та методи адресування команд і даних.
- •1.4 Організація підсистеми пам’яті комп’ютера.
- •1.5 Способи організації взаємодії апаратного забезпечення із системним програмним забезпеченням.
- •1.6 Взаємодія комп’ютера із зовнішніми пристроями.
- •Елементна база комп’ютерів.
- •2.2 Архітектура мп 80486, Pentium, мп adsp.
- •Базовая архитектура процессоров adsp-21xx
- •2.3 Архітектура процесора 80с51.
- •2.4 Risc-процесори ті їх архітектура.
- •2.5 Адресний простір. Способи адресації операндів.
- •2.6 Оперативна пам’ять: архітектура та принципи управління.
- •2.7 Система переривань та їх характеристики.
- •2.8 Динамічний розподіл пам’яті. Організація віртуальної пам’яті.
- •3.1 Склад системного програмного забезпечення.
- •3.2 Класифікація операційних систем.
- •Особенности алгоритмов управления ресурсами
- •Особенности аппаратных платформ
- •Особенности областей использования
- •Особенности методов построения
- •3.3 Різновиди мультизадачності в операційних системах.
- •3.4 Процеси та потоки в операційних системах.
- •Реальний та захищений режими адресації.
- •Особенности процессора 80286
- •Особенности процессоров 80386 — 80486
- •Страничная организация памяти
- •Описание
- •Использование
- •Структура адресного пространства ibm pc в реальном режиме Основная область памяти
- •Дополнительная область памяти
- •3.6 Оперативна пам’ять в мультизадачному режимі.
- •Алгоритми заміщення сегментів та сторінок у віртуальній пам’яті.
- •Структура жорсткого диску.
- •Vfat и длинные имена файлов
- •Файлова система hpfs.
- •Файлова система ntfs.
- •Керування процесами у операційних системах, їх стани та переходи. Управление процессами
- •Состояние процессов
- •Контекст и дескриптор процесса
- •Алгоритмы планирования процессов
- •Вытесняющие и невытесняющие алгоритмы планирования
- •3.11 Основні режими введення-виведення.
- •3.12 Оптимізація роботи з жорстким диском.
- •4.1 Структура системних областей пам’яті (ms-dos).
- •4.2 Програмування дискової підсистеми комп’ютера (mbr, Partition Table, fat12/16/32).
- •4.3 Програмування відеосистеми комп’ютера (cga, ega, vga).
- •4.4 Особливості програмування текстового та графічного режимів відеоадаптера.
- •4.5 Робота з маніпулятором миші (ms-dos, ms-Windows).
- •4.6 Обробка переривань.
- •4.1. Таблица векторов прерываний
- •4.2. Маскирование прерываний
- •4.4. Особенности обработки аппаратных прерываний
- •4.8 Ініціалізація dll-бібліотек, динамічний експорт та імпорт функцій у середовищі Microsoft Windows. Бібліотеки динамічної компоновки. Ініціалізація dll.
- •2.23.1. Статическая и динамическая компоновка
- •Експорт та імпорт функцій при використанні dll-бібліотек.
- •5.1 Системні та локальні шини, основні характеристики.
- •5.2 Шини з комутацією ланцюгів та комутацією пакетів. Розщеплення транзакцій.
- •5.3 Шини Firewire (ieee 1394), pci, pci-e, основні характеристики.
- •Особенности ieee - 1394
- •Шини pci основні характеристики.
- •ШиниPci-е, основні характеристики.
- •5.4 Стандарт ieee 1284 – 1994, фізичний та електричний інтерфейси.
- •5.6 Характеристики сучасних жорстких дисків.
- •5.7 Інтерфейси жорстких дисків в ibm pc, їх особливості.
- •5.8 Характеристики сучасних принтерів, сканерів.
- •5.9 Структура та принцип роботи сучасних модемів.
- •5.10 Основні характеристики джерел безперервного живлення.
- •6.1 Архітектура і стандартизація комп’ютерних мереж.
- •6.2 Лінії зв’язку: класифікація, характеристики, типи кабелів.
- •6.3 Методи кодування даних у комп’ютерних мережах.
- •6.4 Технології канального рівня tcp/ip та їх специфікації. Стек протоколов tcp/ip История и перспективы стека tcp/ip
- •Структура стека tcp/ip. Краткая характеристика протоколов
- •6.5 Мережеве обладнання: класифікація, функції.
- •Параметры сетевого адаптера
- •Функции и характеристики сетевых адаптеров
- •Классификация сетевых адаптеров
- •6.6 Протоколи локальних мереж: tcp, udp, iPv4, iPv6 та ін.
- •36. Протоколи транспортного рівня tcp и udp (загальна характеристика, порти)
- •37. Протокол транспортного рівня udp
- •Адресация iPv4
- •Синтаксис адреса iPv4
- •Типы адресов iPv4
- •Индивидуальные адреса iPv4
- •Групповые адреса iPv4
- •Широковещательные адреса iPv4
- •История создания
- •Исчерпание iPv4 адресов в 2011 году
- •Тестирование протокола
- •Внедрение протокола
- •Сравнение с iPv4
- •Автоконфигурация
- •Метки потоков
- •Механизмы безопасности
- •Основы адресации iPv6
- •Типы Unicast адресов
- •Формат пакета
- •Нотация
- •Зарезервированные адреса iPv6
- •6.7 Адресація в комп’ютерних мережах.
- •Ip адресация, классы ip адресов и значение маски подсети
- •Для чего нужны ip адреса?
- •Структура ip адреса
- •Разделение ip адреса на сетевую и узловую части
- •Классы ip адресов и маски подсети по умолчанию
- •Классовая и бесклассовая адресация
- •Назначение маски подсети
- •Публичные и частные ip-адреса
- •Адреса одноадресных, широковещательных и многоадресных рассылок
- •Одноадресная рассылка
- •Широковещательная рассылка
- •Многоадресная рассылка
- •Сравнение протоколов ip версии 4 (iPv4) и ip версии 6 (iPv6)
- •6.8 Об’єктивні характеристики комп’ютерних мереж.
- •6.9 Схема ip-маршрутизації.
- •6.10 Фрагментація ip-пакетів. Фрагментация ip-пакетов
- •6.11 Служби dns та dhcp.
- •Ключевые характеристики dns
- •Дополнительные возможности
- •Терминология и принципы работы
- •Рекурсия
- •Обратный dns-запрос
- •Записи dns
- •6.12 Протоколи маршрутизації. Протоколы маршрутизации
- •Віртуальні приватні мережі.
- •Уровни реализации
- •Структура vpn
- •Классификация vpn
- •По степени защищенности используемой среды
- •По способу реализации
- •По назначению
- •По типу протокола
- •По уровню сетевого протокола
- •6.14 Засоби забезпечення надійності функціонування та захисту комп’ютерних мереж.
- •7.1 Основи мови програмування Java.
- •7.2 Проміжне програмне забезпечення розподілених комп’ютерних систем. Архітектура rpc (Remote Procedure Calls).
- •7.3 Технологія rmi (Remote Method Invocation).
- •24. Java rmi Достоинства и недостатки Java rmi
- •7.4 Технологія corba .
- •7.5 Сервлет-технологія Java.
- •7.6 Сторінки jsp. Теги та вбудовані об’єкти jsp.
- •26. Теги и встроенные объекты jsp:
- •7.7 Технологія jms. Моделі jms-повідомлень.
- •Введение
- •Архитектура jms
- •Первое знакомство
- •Модель сообщений jms
- •Поля заголовка
- •Свойства (properties) сообщений
- •Уведомления сообщений
- •Интерфейс Message
- •Выборка сообщений
- •Доступ к отправленным сообщениям
- •Изменение полученного сообщения
- •Тело сообщения
- •7.8 Основи мови xml.
- •7.9 Протокол soap. Структура soap – документа.
- •1.4. Операторы
- •1.4.1. Оператор выражение
- •1.4.2. Пустой оператор
- •1.4.3. Составной оператор
- •1.4.4. Оператор if
- •1.4.5. Оператор switch
- •1.4.6. Оператор break
- •1.4.7. Оператор for
- •1.4.8. Оператор while
- •1.4.9. Оператор do while
- •1.4.10. Оператор continue
- •1.4.11. Оператор return
- •1.4.12. Оператор goto
- •8.2 Одновимірні та багатовимірні масиви. Покажчики. Масиви динамічної пам’яті.
- •8.3 Структури, об’єднання, бітові поля структур та об’єднань.
- •Объявление битовых полей
- •Доступ к элементам структур с битовыми полями
- •Размещение битовых полей в памяти
- •Призначення функції. Опис, визначення, виклик функції. Передача даних за значенням та за покажчиком.
- •Функції з параметрами, що замовчуються, зі зміними параметрами
- •8.5 Перевантаження функцій. Шаблони функцій. Покажчики на функції. Перевантажені функції, шаблони функцій.
- •8.6 Функції роботи з файлами. Введення/виведення даних різного типу у файл/з файлу.
- •Int fprintf(file *fp, char *format [,аргумент]…);
- •Int fscanf(file *fp, char *format [,указатель]…);
- •Визначення класу. Конструктор, перевантажені конструктори, деструктор.
- •8.8 Статичні члени класу. Дружні функції класу. Перевантаження операцій.
- •18 Ооп. Поняття дружніх функціїй. Різниця між дружньою функцією - членом класу та не членом класу.
- •19 Ооп. Поняття перевантаження операцій. Правила її використання.
- •8.9 Успадкування класів. Множинне успадкування.
- •9.1 Векторні, паралельні, конвеєрні системи.
- •9.2 Основні характеристики паралельних алгоритмів: ступінь паралелізму, прискорення, ефективність. Закон Амдала.
- •Математическое выражение
- •Иллюстрация
- •Идейное значение
- •9.3 Метод логарифмічного здвоєння та рекурсивного подвоєння.
- •9.4 Методи паралельного множення матриць. §34. Алгоритм умножения матриц
- •9.5 Стандарт mpi, основні функції для організації паралельних програм: ініціалізації та завершення паралельної програми, визначення рангу процесу, визначення загального числа процесів.
- •9.6 Функції двохточкового обміну.
- •9.7 Функції колективного обміну: розподілення, широкомовної розсилки, збору, зведення, сканування.
- •10.1 Архітектура субд. Функції субд.
- •2.1. Основные функции субд
- •2.1.1. Непосредственное управление данными во внешней памяти
- •2.1.2. Управление буферами оперативной памяти
- •2.1.3. Управление транзакциями
- •2.1.4. Журнализация
- •2.1.5. Поддержка языков бд
- •10.2 Реляційна модель та її характеристики.
- •10.3 Потенційні, первинні та зовнішні ключі.
- •10.4 Цілісність реляційних даних. Целостность реляционных данных
- •10.5 Операції реляційної алгебри.
- •10.6 Основні поняття sql: прості запити, склеювання таблиць; умови відбору рядків таблиць; агрегатні функції, запити з групуванням, складні запити. Sql. Простые запросы
- •Агрегатные функции, группировка данных
- •Запрос с группировкой
- •Пояснения
- •Сложные запросы
- •Объединение таблиц
- •Имена таблиц и столбцов
- •Создание обьединения
- •Объединение таблиц через справочную целостность
- •Объединения таблиц по равенству значений в столбцах и другие виды объединений
- •Объединение более двух таблиц
- •Объединение таблицы с собой псевдонимы
- •10.7 Інфологічна, логічна або концептуальна модель даних. Основные этапы проектирования баз данных Концептуальное (инфологическое) проектирование
- •Логическое (даталогическое) проектирование
- •Физическое проектирование
- •10.8 Функціональні залежності. 1, 2 та 3 нормальні форми відношень.
- •8 Нормалізація відношень. 1 та 2 нормальні форми.
- •9 Нормалізація відношень. 3 нормальна форма та нормальна форма Бойса-Кодда. Навести приклади
- •Нормальные формы er-диаграмм
- •Первая нормальная форма er-диаграммы
- •Вторая нормальная форма er-диаграммы
- •Третья нормальная форма er-диаграммы
- •Семантическая модель Entity-Relationship (Сущность-Связь)
- •Основные понятия er-модели
- •Уникальные идентификаторы типов сущности
- •Нормальные формы er-диаграмм
- •Первая нормальная форма er-диаграммы
- •Вторая нормальная форма er-диаграммы
- •Третья нормальная форма er-диаграммы
- •10.9 Багатозначні залежності та залежності з’єднання. 4 та 5 нормальні форми відношень.
- •9.3. Зависимости проекции/соединения и пятая нормальная форма
- •9.3.2. Зависимость проекции/соединения
- •9.3.3. Аномалии, вызываемые наличием зависимости проекции/соединения
- •9.3.4. Устранение аномалий обновления в 3-декомпозиции
- •2.5.5. Пятая нормальная форма
- •4.5. Нормальные формы
- •10.10 Проектування бд методом сутність-зв’язок. Er-діаграми. Моделирование методом "сущность-связь" Основные понятия модели "сущность-связь"
- •Графическая нотация модели: диаграммы "сущность-связь"
- •Нормализация модели "сущность-связь"
- •11.1 Властивості інформації. Класифікація загроз інформації.
- •11.2 Рівні захисту інформації в комп’ютерних мережах.
- •11.3 Законодавчий рівень захисту інформації.
- •11.4 Криптографічний захист інформації.
- •11.5 Стандарти симетричного шифрування даних.
- •11.6 Системи ідентифікації та аутентифікації користувачів.
- •11.7 Парольна система. Вимоги до паролів.
- •11.8 Методи та засоби захисту від віддалених мережевих атак.
Файлова система hpfs.
HPFS (high performance file system)-совместно разработал в 1989 году IBM и Microsoft.
Ее цель - преодолеть некоторые недостатки FAT, такие как:
- ограничения, налагаемые на размер файлов и дискового пространства;
- ограничение длины имени файла;
- фрагментация файлов, приводящая к снижению быстродействия системы и износу оборудования;
- непроизводительные затраты памяти, вызванные большими размерами кластеров;
- подверженность потерям данных.
Непроизводительные потери дискового пространства связаны с тем, что место на диске выделяется блоками - кластерами. Кластер - это единица дискового пространства, которыми оперирует файловая система при выделении места для файла. В среднем половина выделяемого кластера для каждого файла будет затрачиваться в пустую. Потери можно сократить внедрением более эффективных файловых систем. Простой переход на HPFS, работающий в среде OS/2, позволяет вновь вернуться к первоначальному размеру выделяемого блока - 512 байт, причем для любых размеров диска.
В OS/2 положение осложняется применяемым методом хранения расширенных атрибутов. HPFS распределяет пространство, основываясь на физических 512-байтовых секторах, а не на кластерах, независимо от размера раздела. Система HPFS позволяет уменьшить непроизводительные потери, т. к. в ней предусмотрено хранение до 300 байт расширенных атрибутов в F-узле файла, без захвата для этого дополнительного сектора.
Файловая система HPFS обеспечивает гораздо более низкий уровень фрагментации. Хотя избавиться полностью от нее не удается, снижение производительности, возникаю-щее по этой причине, почти незаметно для пользователя.
Первые 16 секторов раздела HPFS составляют загрузочный блок. Эта область содержит метку диска и код начальной загрузки системы. Сектор 16 ( суперблок), содержит много общей информации о файловой системе в целом: размер раз-дела, указатель на корневой каталог, счетчик элементов каталогов, номер версии HPFS, дату последней проверки и исправления раздела при помощи команды CHKDSK, дату последнего выполнения про-цедуры дефрагментации раздела. Он также содержит указатели на список испорченных блоков на диске, таблицу дефектных секторов и список доступных секторов.
Сектор 17- SpareBlock (запасной блок) содержит указатель на список секторов, которые можно использовать для "горячего" исправления ошибок, счетчик доступных секторов для "горячего" исправления ошибок, указатель на резерв свободных блоков, применяемых для управления деревьями каталогов, и информацию о языковых наборах символов. HPFS использует информацию о языковых наборах, чтобы дать возможность пересылать файлы, составленные на разных языках, даже в том случае, когда имена файлов содержат уникальные для какого-либо языка символы. SpareBlock содержит так называемый "грязный" флаг. Этот флаг сообщает операционной системе о том, было ли завершение предыдущего сеанса работы нормальным, либо произошло в результате сбоя электропитания, или файлы не были закрыты должным образом по какой-то другой причине. Если этот флаг обнаружен во время начальной загрузки, то операционная система автоматически запускает утилиту CHKDSK, пытаясь обнаружить и исправить все ошибки, внесенные в файловую систему из-за неправильного выключения системы.
Во время форматирования раздела HPFS делит его на полосы по 8 Мбайт каждая. Каждую полосу представить себе как виртуальный "мини-диск" - имеет отдельную табл. объемом 2 Кбайт. В ней указывается, какие секторы полосы доступны, а какие заняты. Чтобы мах увеличить протяженность непрерывного пространства для размещения файлов, таблицы попеременно располагаются в начале и в конце полос (рис.1).
Рис. 1. Прием увеличения доступного непрерывного пространства
Этот метод позволяет файлам размером до 16 Мбайт (минус 4 Кбайта, отводимые для размещения таблицы) храниться в одной непрерывной области.
Затем файловая система HPFS оценивает размер каталога и резервирует необходимое пространство в полосе, расположенной ближе всего к середине диска. После форматирования объем диска в HPFS кажется меньше, чем в FAT, т.к. заранее резервируется место для каталогов в центре диска (чтобы физические головки, считывающие данные, никогда не проходили более половины ширины диска).
Пространство заранее распределено - это позволяет HPFS использовать специально оптимизированное программное обеспечение для более быстрой и эффективной работы с каталогами.
Число файлов в каждом блоке каталога - переменная величина, зависящая от длины имен файлов, содержащихся в нем. Имена файлов в HPFS могут иметь длину до 254 символов, они сортируются в порядке, определяемом последовательностью символов в текущей кодовой странице системы.
Скорость работы увеличивается и благодаря способу хранения элементов каталогов. HPFS использует для хранения элементов каталогов структуру данных - В-дерево. Каждый элемент каталога начинается с числа, представляющего длину элемента, которая изменяется в зависимости от длины имени файла. Затем следуют время и дата создания файла, его размер и атрибуты (только для чтения, архивный, скрытый и системный) и указатель на F-узел файла. Каждый файл (и каталог) имеет F-узел - структуру данных, занимающую один сектор и содержащую важную информацию о файле.
F-узел содержит указатель на начало файла, первые 15 символов имени файла, дополнительные временные маркеры последней записи и последнего доступа, журнал, с информацией о предыдущих обращениях к файлу, структуру распределения, описывающую размещение файла на диске, и первые 300 байт расширенных атрибутов файла, которые редко занимают более 300 байт, что означает, что HPFS для получения этой информации приходится читать на один сектор меньше, чем FAT.) Программы LAN Server и LAN Manager фирмы IBM также сохраняют в F-узле информацию об управлении пользователь-ским доступом (Access Control). F-узлы хранятся в смежных с представляемыми ими фай-лами секторах. Когда файл открывается, то 4 автоматически считываемых в кэш сектора содержат F-узел и 3-и первых сектора файла.
Дополнительные преимущества HPFS по сравнению с FAT имеет благодаря техническому приему - кодированию по длине выполнения (Run Length Encoding, RLE). HPFS не определяет в таблице каждый используемый сектор, а сохраняет указатель на первый сектор и число последовательно расположенных используемых секторов. Каждая область дискового пространства, описываемая парой (сектор, длина), называется экстентом. Хотя HPFS и сводит фрагментацию к мin, файлы все же могут быть в некоторой степени фрагментированными. В таких ситуациях пары, описывающие экстенты, добавляются к F-узлу файла. Один F-узел может хранить до 8 экстентов, обеспечивая достаточное пространство для большинства файлов.
Если требуется еще большее пространство, то HPFS изменяет структуру таким образом, что F-узел становится корнем В+ -дерева секторов размещения. В+-дерево является вари-антом бинарного В-дерева. Созданное как структура для более быстрого обнаружения данных по сравнению с методом последовательного перебора, бинарное дерево состоит из ветвей, каждая из которых представляет выбор 1-го из 2-х возможных продолжений. При физической структуре файла, основанному на экстентах, следует учесть, что многие современные контроллеры дисков могут читать за одно обращение сразу несколько секторов. Применяемая в HPFS схема значительно повышает шансы использовать эту возможность, при этом происходит еще большее уменьшение числа требуемых операций взаимодействия между программой, файловой системой, драйвером дискового устройства и физическим диском.
При открытии или создании файла интеллектуальный алгоритм HPFS выделяет наибо-лее подходящую полосу. Программный интерфейс, используемый для создания файла, позволяет программисту сообщить ОС предполагаемый размер файла. С помощью этой информации HPFS может заранее выбрать для размещения файла полосу, имеющую непрерывную область наибольшего размера. Именно поэтому HPFS наиболее эффективно работает в больших разделах - больше число полос предоставляет большие возможности выбора.
При открытии файла F-узел и первые 3 сектора считываются и помещаются в кэш. Если открываемый файл - исполняемый или если по данным журнала доступа к файлам в F-узле видно, что файл после открытия читается целиком, то многие секторы будут предварительно автоматически прочитаны и помещены в кэш.
Если попытка записи на диск заканчивается неудачно, то HPFS отыскивает в SpareBlock блок, который можно использовать для "горячего" исправления. Данные записываются в область "горячего" исправления, а табл. неисправных блоков обновляются, указывая испорченный сектор и блок. HPFS будет автоматически перенаправлять запросы чтения по новому адресу. Во время очередного выполнения утилиты CHKDSK файл будет скопирован в новое место, где он может храниться в непрерывной области.
Для повышения эффективности система HPFS предоставляет многоуровневые кэши.
HPFS обладает повышенной отказоустойчивостью по сравнению с FAT. В системе HPFS вместо табл. размещения файлов применяется битовый массив, который содержит флаг, помечающий используемые секторы. Если область битового массива будет разрушена, пользователь этого не заметит, даже если это случится во время работы системы. F-узел файла также содержит информацию о размещении каждого файла. Поэтому область битового массива может быть восстановлена после поиска этой информации в F-узлах.
При работе с HPFS в случае потери каталога у каждого файла из этого каталога теряет-ся лишь дата последней операции записи в файл, дата создания и длинное имя файла. Элемент каталога - это всего лишь указатель на F-узел. В F-узле хранятся первые 15 символов имени файла (+ информация о том, имелись ли в имени файла другие символы, кроме первых 15) и прочая информация, нужная для доступа к файлу. Утилиты восстановления могут впоследствии найти в F- узле сведения о том или ином файле. Эта избыточность, обеспечиваемая каталогом и F-узлами, значительно увеличивает шансы на восстановление данных. CHKDSK в настоящее время - единственная утилита восстановления, поставляемая с OS/2, которая, пока не использует всю имеющуюся информацию.
HPFS не налагает ограничений на mах размер файла, но OS/2 в настоящее время устанавливает предел в 2 Гбайта на один файл. Цель HPFS - доведение размера раздела до 2 Тбайт, но сегодня имеется ограничение в 64 Гбайта, поскольку некоторые части системы HPFS до сих пор остаются 16-разрядными.