
Solutions manual for mechanics and thermodynamics
.pdf
21
In the y direction we have:
|
|
|
|
|
|
ay |
= |
°g |
|||
|
|
|
|
|
y ° y0 |
= |
0 |
||||
|
|
|
|
1 |
|
|
|
|
|
||
0 = y ° y0 = v0yt + |
|
|
ayt2 |
|
|||||||
2 |
|
||||||||||
|
= |
v0 sin µ t ° |
1 |
gt2 |
|||||||
|
2 |
||||||||||
) v0 sin µ = |
1 |
gt |
|
|
|
|
|
|
|
|
|
|
2 |
2v0 sin µ |
|
|
|
||||||
|
) t = |
|
|
|
|||||||
|
|
g |
|
|
|
|
|
|
) R |
||
|
|
|
|
|
i.e. |
R = |
v2 sin 2µ |
||
0 |
|
|||
g |
||||
|
|
|||
|
|
|
|
= v0 cos µ |
2v0 sin µ |
= |
2v2 cos µ sin µ |
= |
v2 sin 2µ |
|
|
|
0 |
0 |
|||
g |
|
g |
g |
|||
|
|
|
|
which is a maximum for µ = 45o.
B) |
|
|
|
|
|
|
|
|
|
|
( |
30£103m )2 sin(2 |
£ |
15o) |
|
69:4 £ 0:5 |
|
m |
2 |
R = |
|
60£60sec |
|
= |
|
|
|||
|
|
9:8m sec°2 |
|
|
9:8 |
sec2 m sec°2 |
|||
= |
3:5 m |
|
|
|
|
|
|
|
i.e. R = 3:5 m

22 |
CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS |
2.A projectile is Øred with an initial speed vo at an angle µ with respect to the horizontal. Neglect air resistance and derive a formula for the maximum height H, that the projectile reaches. (Your formula should make no explicit reference to time, t).
SOLUTION
v0 |
height, H |
θ |
v0 y |
|
v0 x
We wish to Ønd the maximum height H. At that point vy = 0. Also in the y direction we have
ay = °g and H ¥ y ° y0.
The approporiate constant acceleration equation is :
vy2 = v02y + 2ay(y ° y0)
0 |
= |
v02 sin2 µ ° 2gH |
||
) H |
= |
v02 sin2 µ |
||
|
2g |
|
which is a maximum for µ = 90o, as expected.

23
3.A) If a bulls-eye target is at a horizontal distance R away, derive an expression for the height L, which is the vertical distance above the bulls-eye that one needs to aim a ri e in order to hit the bulls-eye. Assume the bullet leaves the ri e with speed v0.
B) How much bigger is L compared to the projectile height H ? Note: In this problem use previous results found for the range R and
height H, namely R = |
v02 sin 2µ |
= |
2v02 sin µ cos µ |
and H = |
v02 sin2 µ |
. |
g |
g |
|
||||
|
|
|
2g |
|||
|
|
|
|
|
|
|
SOLUTION |
|
|
|
|
|
|
L
height, H
θ
range, R
24 |
|
|
CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS |
|
||||||||||||
A) From previous work we found the range R = |
v2 sin 2µ |
= |
2v2 sin µ cos µ |
. |
||||||||||||
0 |
|
|
|
0 |
||||||||||||
|
g |
g |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
From the diagram we have |
|
|
|
|
|
|
|
|
||||||||
|
|
|
tan µ |
= |
|
L |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R |
2v2 sin µ cos µ sin µ |
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
= |
R tan µ = |
|
|
|
||||||||
|
|
|
) L |
0 |
|
|
|
|
|
|
|
|||||
|
|
|
g |
|
|
cos µ |
|
|
|
|||||||
|
|
|
|
= |
|
2v2 sin2 µ |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
g |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
B) Comparing to our previous formula for the maximum height |
|
|||||||||||||||
H = |
v2 sin2 |
µ |
we see that L = 4H. |
|
|
|
|
|
|
|
|
|||||
0 |
|
|
|
|
|
|
|
|
|
|||||||
2g |
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

25
4.Normally if you wish to hit a bulls-eye some distance away you need to aim a certain distance above it, in order to account for the downward motion of the projectile. If a bulls-eye target is at a horizontal distance D away and if you instead aim an arrow directly at the bulls-eye (i.e. directly horiziontally), by what (downward) vertical distance would you miss the bulls-eye ?
SOLUTION
L
D
In the x direction we have: ax = 0; v0x = v0; x°x0 ¥ R.
The appropriate constant acceleration equation in the x direction is
x ° x0 = v0x + |
1 |
axt2 |
|
||||
2 |
|
||||||
) D |
= |
v0t |
|
|
|
||
t |
= |
|
D |
|
|
|
|
v0 |
|
|
|
||||
|
|
|
|
|
|||
In the y direction we have: |
|
ay = °g; |
v0y = 0. |
The appropriate constant acceleration equation in the y direction is
|
1 |
|
|
|
|
1 |
|
|
|
|
||
y ° y0 = v0y + |
|
ayt2 = 0 ° |
|
|
gt2 |
|
|
|||||
2 |
2 |
|
|
|||||||||
|
|
|
|
|
|
|
1 D |
|||||
|
|
|
|
|
= |
0 ° |
|
g( |
|
)2 |
||
|
|
|
|
|
2 |
v0 |
||||||
but y0 = 0, giving y =° |
1 D |
2 |
|
1 |
D 2 |
|
|
|||||
2g(v0 ) |
|
or L = |
2g(v0 ) |
. |
|

26 |
CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS |
5.Prove that the trajectory of a projectile is a parabola (neglect air resistance). Hint: the general form of a parabola is given by y = ax2 + bx + c.
SOLUTION
v0
v0 y
θ
v0 x
Let x0 = y0 = 0.
In the x direction we have
vx |
= |
v0x + axt |
|
|
|
|
|
|
|
||||||||
|
= |
v0x |
|
|
|
|
|
because ax = 0 |
|||||||||
Also |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x ° x0 |
= |
vx + v0x |
t |
|||||||||||||
|
|
|
2 |
|
|
||||||||||||
In the y direction |
|
) x |
= v0xt = v0 cos µt |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
y ° y0 = v0yt + |
|
|
ayt2 |
|
|
|
|
|
|
|
|||||||
2 |
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
) y = |
v0 sin µt ° |
|
gt2 |
|
|
|
|
|
because ay = °g |
||||||||
2 |
1 |
|
|
||||||||||||||
= |
v0 sin µ |
|
|
x |
|
|
x |
||||||||||
|
|
|
° |
|
|
g( |
|
)2 |
|||||||||
v0 cos µ |
2 |
v0 cos µ |
|||||||||||||||
= |
x tan µ ° |
|
|
g |
|
|
x2 |
|
|
||||||||
2v2 cos2 µ |
|
|
|||||||||||||||
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
which is of the form y = ax2 + bx + c, being the general formula for a parabola.

27
6.Even though the Earth is spinning and we all experience a centrifugal acceleration, we are not ung oÆ the Earth due to the gravitational force. In order for us to be ung oÆ, the Earth would have to be spinning a lot faster.
A)Derive a formula for the new rotational time of the Earth, such that a person on the equator would be ung oÆ into space. (Take the radius of Earth to be R).
B)Using R = 6:4 million km, calculate a numerical anser to part A) and compare it to the actual rotation time of the Earth today.
SOLUTION
A person at the equator will be ung oÆ if the centripetal acceleration a becomes equal to the gravitational acceleration g. Thus
A) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
g = a |
= |
|
v2 (2ºR )2 |
|
|
|
4º2R |
||||||||||||
|
|
|
= |
|
|
|
T |
|
|
|
= |
|
|||||||
|
R |
|
|
|
R |
|
|
|
T 2 |
||||||||||
T 2 |
= |
|
4º2R |
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
g |
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|||
T |
= |
2ºs |
|
|
|
|
|
|
|
|
|
|
|
||||||
g |
|
|
|
|
|
|
|
|
|
|
|||||||||
B) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
T = 2ºs |
6:4 £ |
10 |
6 |
|
km |
|
|||||||||||||
|
|
|
|
|
|
|
|
||||||||||||
9:81 m sec° |
2 |
|
|
|
|||||||||||||||
= 2ºs |
|
|
|
|
|||||||||||||||
6:4 £ 109 m |
|
|
|||||||||||||||||
2 |
|
||||||||||||||||||
|
|
|
|
9:81 m sec° |
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
||||||||||||
= |
2º |
s |
6:4 £ 109 |
|
sec |
|
|||||||||||||
|
|
9:81 |
|
|
|
|
|
|
|
|
|||||||||
|
2ºs |
|
|
|
|
|
|||||||||||||
= |
6:4 £ 109 |
|
|
|
hour |
||||||||||||||
|
|
|
|
9:81 |
|
|
60 £ 60 sec |
||||||||||||
= |
44:6 hour |
|
|
|
|
|
|
|
|
|
|
i.e. Earth would need to rotate about twice as fast as it does now (24 hours).

28 |
CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS |
7.A staellite is in a circular orbit around a planet of mass M and radius R at an altitude of H. Derive a formula for the additional speed that the satellite must acquire to completely escape from the planet. Check that your answer has the correct units.
SOLUTION
The gravitational potential energy is U = °GMrm where m is the mass of the satellite and r = R + H.
Conservation of energy is
Ui + Ki = Uf + Kf
To escape to inØnity then Uf = 0 and Kf = 0 (satellite is not moving if it just barely escapes.)
|
Mm |
|
1 |
|
||||
) °G |
|
|
+ |
|
mvi2 = 0 |
|||
r |
2 |
|||||||
giving the escape speed as |
|
|
|
|
|
|
|
|
vi = s |
|
|
|
|||||
2 r |
||||||||
|
|
|
|
|
GM |
The speed in the circular orbit is obtained from
|
F |
= |
|
ma |
|
|
||||||||||||
Mm |
= |
|
|
|
v2 |
|
|
|||||||||||
G |
|
|
|
m |
|
|
|
|
|
|
|
|
|
|
||||
r2 |
|
r |
|
|
||||||||||||||
|
|
|
|
|
s |
|
|
|
|
|||||||||
) v |
= |
|
|
|
|
|
r |
|
|
|||||||||
|
|
|
|
|
|
|
|
|
GMm |
|
|
|||||||
The additional speed required is |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
vi ° v = |
s |
|
|
|
|
|
° s |
|
|
|
|
|||||||
|
|
|
r |
|
|
|
r |
|||||||||||
|
|
|
|
|
2GM |
|
|
|
|
|
GM |
|||||||
= |
|
(p2 ° 1)s |
|
|
|
|||||||||||||
|
r |
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
GM |
Check units:
q
F = GMr2m and so the units of G are Nkgm22 . The units of GMr are
s |
|
|
|
|
|
|
= s |
|
|
|
|
= pm2 |
sec°2 = m sec°1 |
|
N m |
|
m ° |
|
|
° m |
° |
|
|
||||||
|
|
|
2 |
kg |
2 |
kg |
kg m sec 2 m2 |
kg |
2 |
kg |
|
|
which has the correct units of speed.

29
8.A mass m is attached to the end of a spring with spring constant k on a frictionless horizontal surface. The mass moves in circular motion of radius R and period T . Due to the centrifugal force, the spring stretches by a certain amount x from its equilibrium position. Derive a formula for x in terms of k, R and T . Check that x has the correct units.
SOLUTION |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
ßF |
= |
ma |
|
|
|
|
|
|
|
|
|||||
|
|
kx |
= |
mv2 |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
r |
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
= |
mv2 |
m(2ºR )2 |
|
4º2mR |
|||||||||
|
|
|
x |
|
|
|
= |
T |
|
|
= |
|
|
|
|
||
|
|
|
|
kR |
kR |
|
|
|
kT 2 |
||||||||
Check units: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
The units of k are N m°1 (because F = |
° |
kx for a spring), and |
|||||||||||||||
kg m |
. Thus |
4º2mR |
has units |
|
|
|
|
|
|||||||||
N ¥ sec2 |
|
kT 2 |
|
|
|
|
|
|
|
||||||||
|
|
kg m |
= |
|
|
kg m |
|
|
|
|
|
= m |
|||||
|
|
|
|
|
|||||||||||||
|
N m°1sec2 |
kg m sec°2 m°1sec2 |
which is the correct unit of distance.

30 |
CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS |
9.A cannon ball is Øred horizontally at a speed v0 from the edge of the top of a cliÆ of height H. Derive a formula for the horizontal distance (i.e. the range) that the cannon ball travels. Check that your answer has the correct units.
SOLUTION
v0
H
R
In the x (horizontal) direction
x ° x0 = v0xt + 12axt2
Now R = x ° x0 and ax = 0 and v0x = v0 giving R = v0t.
We obtain t from the y direction |
|
|
|
|
|
|
y ° y0 = v0yt + |
1 |
ayt2 |
||||
|
||||||
2 |
||||||
Now y0 = 0, y = °H, v0y = 0, ay = °g giving |
||||||
°H = °2gt2 |
or |
|
t = s |
|
|
|
|
2g |
|||||
1 |
|
|
|
|
|
H |
Substuting we get
s
2H R = v0t = v0 g
Check units: q
The units of v0 2H are
g
m |
= m sec°1psec2 = m sec°1 sec = m |
m sec°1rm sec°2 |
which are the correct units for distance.