Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Solutions manual for mechanics and thermodynamics

.pdf
Скачиваний:
32
Добавлен:
02.05.2014
Размер:
590.57 Кб
Скачать

21

In the y direction we have:

 

 

 

 

 

 

ay

=

°g

 

 

 

 

 

y ° y0

=

0

 

 

 

 

1

 

 

 

 

 

0 = y ° y0 = v0yt +

 

 

ayt2

 

2

 

 

=

v0 sin µ t °

1

gt2

 

2

) v0 sin µ =

1

gt

 

 

 

 

 

 

 

 

 

2

2v0 sin µ

 

 

 

 

) t =

 

 

 

 

 

g

 

 

 

 

 

 

) R

 

 

 

 

i.e.

R =

v2 sin 2µ

0

 

g

 

 

 

 

 

 

= v0 cos µ

2v0 sin µ

=

2v2 cos µ sin µ

=

v2 sin 2µ

 

 

0

0

g

 

g

g

 

 

 

 

which is a maximum for µ = 45o.

B)

 

 

 

 

 

 

 

 

 

 

(

30£103m )2 sin(2

£

15o)

 

69:4 £ 0:5

 

m

2

R =

 

60£60sec

 

=

 

 

 

 

9:8m sec°2

 

 

9:8

sec2 m sec°2

=

3:5 m

 

 

 

 

 

 

 

i.e. R = 3:5 m

22

CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS

2.A projectile is Øred with an initial speed vo at an angle µ with respect to the horizontal. Neglect air resistance and derive a formula for the maximum height H, that the projectile reaches. (Your formula should make no explicit reference to time, t).

SOLUTION

v0

height, H

θ

v0 y

 

v0 x

We wish to Ønd the maximum height H. At that point vy = 0. Also in the y direction we have

ay = °g and H ¥ y ° y0.

The approporiate constant acceleration equation is :

vy2 = v02y + 2ay(y ° y0)

0

=

v02 sin2 µ ° 2gH

) H

=

v02 sin2 µ

 

2g

 

which is a maximum for µ = 90o, as expected.

23

3.A) If a bulls-eye target is at a horizontal distance R away, derive an expression for the height L, which is the vertical distance above the bulls-eye that one needs to aim a ri e in order to hit the bulls-eye. Assume the bullet leaves the ri e with speed v0.

B) How much bigger is L compared to the projectile height H ? Note: In this problem use previous results found for the range R and

height H, namely R =

v02 sin 2µ

=

2v02 sin µ cos µ

and H =

v02 sin2 µ

.

g

g

 

 

 

 

2g

 

 

 

 

 

 

 

SOLUTION

 

 

 

 

 

 

L

height, H

θ

range, R

24

 

 

CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS

 

A) From previous work we found the range R =

v2 sin 2µ

=

2v2 sin µ cos µ

.

0

 

 

 

0

 

g

g

 

 

 

 

 

 

 

 

 

 

 

 

 

From the diagram we have

 

 

 

 

 

 

 

 

 

 

 

tan µ

=

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

R

2v2 sin µ cos µ sin µ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

R tan µ =

 

 

 

 

 

 

) L

0

 

 

 

 

 

 

 

 

 

 

g

 

 

cos µ

 

 

 

 

 

 

 

=

 

2v2 sin2 µ

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B) Comparing to our previous formula for the maximum height

 

H =

v2 sin2

µ

we see that L = 4H.

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

2g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

4.Normally if you wish to hit a bulls-eye some distance away you need to aim a certain distance above it, in order to account for the downward motion of the projectile. If a bulls-eye target is at a horizontal distance D away and if you instead aim an arrow directly at the bulls-eye (i.e. directly horiziontally), by what (downward) vertical distance would you miss the bulls-eye ?

SOLUTION

L

D

In the x direction we have: ax = 0; v0x = v0; x°x0 ¥ R.

The appropriate constant acceleration equation in the x direction is

x ° x0 = v0x +

1

axt2

 

2

 

) D

=

v0t

 

 

 

t

=

 

D

 

 

 

 

v0

 

 

 

 

 

 

 

 

In the y direction we have:

 

ay = °g;

v0y = 0.

The appropriate constant acceleration equation in the y direction is

 

1

 

 

 

 

1

 

 

 

 

y ° y0 = v0y +

 

ayt2 = 0 °

 

 

gt2

 

 

2

2

 

 

 

 

 

 

 

 

 

1 D

 

 

 

 

 

=

0 °

 

g(

 

)2

 

 

 

 

 

2

v0

but y0 = 0, giving y =°

1 D

2

 

1

D 2

 

 

2g(v0 )

 

or L =

2g(v0 )

.

 

26

CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS

5.Prove that the trajectory of a projectile is a parabola (neglect air resistance). Hint: the general form of a parabola is given by y = ax2 + bx + c.

SOLUTION

v0

v0 y

θ

v0 x

Let x0 = y0 = 0.

In the x direction we have

vx

=

v0x + axt

 

 

 

 

 

 

 

 

=

v0x

 

 

 

 

 

because ax = 0

Also

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x ° x0

=

vx + v0x

t

 

 

 

2

 

 

In the y direction

 

) x

= v0xt = v0 cos µt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

y ° y0 = v0yt +

 

 

ayt2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

) y =

v0 sin µt °

 

gt2

 

 

 

 

 

because ay = °g

2

1

 

 

=

v0 sin µ

 

 

x

 

 

x

 

 

 

°

 

 

g(

 

)2

v0 cos µ

2

v0 cos µ

=

x tan µ °

 

 

g

 

 

x2

 

 

2v2 cos2 µ

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

which is of the form y = ax2 + bx + c, being the general formula for a parabola.

27

6.Even though the Earth is spinning and we all experience a centrifugal acceleration, we are not ung oÆ the Earth due to the gravitational force. In order for us to be ung oÆ, the Earth would have to be spinning a lot faster.

A)Derive a formula for the new rotational time of the Earth, such that a person on the equator would be ung oÆ into space. (Take the radius of Earth to be R).

B)Using R = 6:4 million km, calculate a numerical anser to part A) and compare it to the actual rotation time of the Earth today.

SOLUTION

A person at the equator will be ung oÆ if the centripetal acceleration a becomes equal to the gravitational acceleration g. Thus

A)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g = a

=

 

v2 (2ºR )2

 

 

 

4º2R

 

 

 

=

 

 

 

T

 

 

 

=

 

 

R

 

 

 

R

 

 

 

T 2

T 2

=

 

4º2R

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

T

=

2ºs

 

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

 

 

 

 

 

 

B)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T = 2ºs

6:4 £

10

6

 

km

 

 

 

 

 

 

 

 

 

9:81 m sec°

2

 

 

 

= 2ºs

 

 

 

 

6:4 £ 109 m

 

 

2

 

 

 

 

 

9:81 m sec°

 

 

 

 

 

 

 

 

 

 

 

 

=

2º

s

6:4 £ 109

 

sec

 

 

 

9:81

 

 

 

 

 

 

 

 

 

2ºs

 

 

 

 

 

=

6:4 £ 109

 

 

 

hour

 

 

 

 

9:81

 

 

60 £ 60 sec

=

44:6 hour

 

 

 

 

 

 

 

 

 

 

i.e. Earth would need to rotate about twice as fast as it does now (24 hours).

28

CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS

7.A staellite is in a circular orbit around a planet of mass M and radius R at an altitude of H. Derive a formula for the additional speed that the satellite must acquire to completely escape from the planet. Check that your answer has the correct units.

SOLUTION

The gravitational potential energy is U = °GMrm where m is the mass of the satellite and r = R + H.

Conservation of energy is

Ui + Ki = Uf + Kf

To escape to inØnity then Uf = 0 and Kf = 0 (satellite is not moving if it just barely escapes.)

 

Mm

 

1

 

) °G

 

 

+

 

mvi2 = 0

r

2

giving the escape speed as

 

 

 

 

 

 

 

 

vi = s

 

 

 

2 r

 

 

 

 

 

GM

The speed in the circular orbit is obtained from

 

F

=

 

ma

 

 

Mm

=

 

 

 

v2

 

 

G

 

 

 

m

 

 

 

 

 

 

 

 

 

 

r2

 

r

 

 

 

 

 

 

 

s

 

 

 

 

) v

=

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

GMm

 

 

The additional speed required is

 

 

 

 

 

 

 

 

 

 

 

 

 

vi ° v =

s

 

 

 

 

 

° s

 

 

 

 

 

 

 

r

 

 

 

r

 

 

 

 

 

2GM

 

 

 

 

 

GM

=

 

(p2 ° 1)s

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GM

Check units:

q

F = GMr2m and so the units of G are Nkgm22 . The units of GMr are

s

 

 

 

 

 

 

= s

 

 

 

 

= pm2

sec°2 = m sec°1

N m

 

m °

 

 

° m

°

 

 

 

 

 

2

kg

2

kg

kg m sec 2 m2

kg

2

kg

 

 

which has the correct units of speed.

29

8.A mass m is attached to the end of a spring with spring constant k on a frictionless horizontal surface. The mass moves in circular motion of radius R and period T . Due to the centrifugal force, the spring stretches by a certain amount x from its equilibrium position. Derive a formula for x in terms of k, R and T . Check that x has the correct units.

SOLUTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ßF

=

ma

 

 

 

 

 

 

 

 

 

 

kx

=

mv2

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

mv2

m(2ºR )2

 

4º2mR

 

 

 

x

 

 

 

=

T

 

 

=

 

 

 

 

 

 

 

 

kR

kR

 

 

 

kT 2

Check units:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The units of k are N m°1 (because F =

°

kx for a spring), and

kg m

. Thus

4º2mR

has units

 

 

 

 

 

N ¥ sec2

 

kT 2

 

 

 

 

 

 

 

 

 

kg m

=

 

 

kg m

 

 

 

 

 

= m

 

 

 

 

 

 

N m°1sec2

kg m sec°2 m°1sec2

which is the correct unit of distance.

30

CHAPTER 3. MOTION IN 2 & 3 DIMENSIONS

9.A cannon ball is Øred horizontally at a speed v0 from the edge of the top of a cliÆ of height H. Derive a formula for the horizontal distance (i.e. the range) that the cannon ball travels. Check that your answer has the correct units.

SOLUTION

v0

H

R

In the x (horizontal) direction

x ° x0 = v0xt + 12axt2

Now R = x ° x0 and ax = 0 and v0x = v0 giving R = v0t.

We obtain t from the y direction

 

 

 

 

 

y ° y0 = v0yt +

1

ayt2

 

2

Now y0 = 0, y = °H, v0y = 0, ay = °g giving

°H = °2gt2

or

 

t = s

 

 

 

2g

1

 

 

 

 

 

H

Substuting we get

s

2H R = v0t = v0 g

Check units: q

The units of v0 2H are

g

m

= m sec°1psec2 = m sec°1 sec = m

m sec°1rm sec°2

which are the correct units for distance.