Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Solutions manual for mechanics and thermodynamics

.pdf
Скачиваний:
30
Добавлен:
02.05.2014
Размер:
590.57 Кб
Скачать

71

B) The rotational inertia about the z axis is

X

Iz = ri2mi

i

=a2M + (°a)2M + b2m + (°b)2m

=2Ma2 + 2mb2

The kinetic energy about the z axis is

Kz = 12I!2

=12(2Ma2 + 2mb2)!2

=(Ma2 + mb2)!2

72

CHAPTER 10. ROTATION

7.A uniform object with rotational inertia I = ÆmR2 rolls without slipping down an incline of height H and inclination angle µ. With what speed does the object reach the bottom of the incline? What is the speed for a hollow cylinder (I = mR2) and a solid cylinder

(I = 12 MR2)? Compare to the result obtained when an object is simply dropped from a height H.

SOLUTION

The total kinetic energy is (with v = !R)

K =

1

mv2

+

1

I!2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

=

 

+

2

µR

 

 

= (1 + Æ)2mv2

2mv2

2ÆmR2

 

 

1

 

 

1

 

v

 

2

1

 

Conservation of energy is

 

 

 

 

 

Ki + Ui = Kf + Uf

 

 

 

 

 

O + mgH = (1 + Æ)

1

mv2 + O

 

 

2

 

 

 

 

 

 

 

 

 

 

 

) v = s

2gH

 

 

 

 

 

 

 

 

 

 

 

 

1 + Æ

 

 

 

 

 

For a hollow cylinder I = mR2, i.e. Æ = 1 and v = p

 

.

gH

For a solid cylinder I = 21 mR2, i.e. Æ = 21

and v = q

 

 

 

34 gH

When Æ = 0,pwe get the result for simply dropping an object, namely v = 2gH.

73

8.A pencil of length L, with the pencil point at one end and an eraser at the other end, is initially standing vertically on a table with the pencil point on the table. The pencil is let go and falls over. Derive a formula for the speed with which the eraser strikes the table, assuming that the pencil point does not move. [WS 324]

SOLUTION

The center of mass of the pencil (of mass m) is located half-way up at a height of L=2. Using conservation of energy

12I!2 = mg L=2

where ! is the Ønal angular speed of the pencil. We need to calculate I for a uniform rod (pencil) about an axis at one end. This is

ZZ

I = r2dm = r2 dV

where dV = Adr with A being the cross-sectional area of the rod (pencil). Thus

I =

 

 

Z

 

 

 

 

 

Z L

 

 

r2Adr = A r2dr

= A 3r3

0

0

= A L3=3

 

 

 

 

1

 

 

L

 

 

 

 

 

 

 

 

 

 

 

 

 

The density is = m =

m

 

giving

 

 

 

 

 

AL

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

I =

 

m

L3

1

 

 

 

 

A

 

 

 

=

 

mL2

 

 

 

 

3

 

 

 

 

 

 

AL

 

 

3

 

We put this into the conservation of energy equation

1 1

 

 

 

 

 

 

 

= mg

L

 

 

 

 

mL2!2

 

 

 

2

3

2

)

 

1

 

L!2 = g

 

 

 

 

 

 

 

 

3

 

 

Now for the eraser v = L!, so that

 

 

 

 

 

1

L

v2

= g

 

 

 

 

 

 

 

 

 

 

 

 

 

3

L2

 

 

 

 

 

 

 

 

 

)

 

 

 

v2

= g

 

 

 

 

 

3L

 

 

 

 

 

) v = p

 

 

 

 

 

 

 

3gL

 

 

74

CHAPTER 10. ROTATION

Chapter 11

ROLLING, TORQUE & ANGULAR MOMENTUM

75

76CHAPTER 11. ROLLING, TORQUE & ANGULAR MOMENTUM

1.A bullet of mass m travelling with a speed v is shot into the rim of a solid circular cylinder of radius R and mass M as shown in the Øgure. The cylinder has a Øxed horizontal axis of rotation, and is originally at rest. Derive a formula for the angular speed of the cylinder after

the bullet has become imbedded in it. (Hint: The rotational inertia of a solid cylinder about the center axis is I = 12 MR2). [WS354-355]

v

.

m

R

M

SOLUTION

Conservation of angular momentum is

Li = Lf

The initial angular momentum is just that of the bullet, with magnitude Li = mvR. Thus

mvR = I!

where the Ønal rotational inertial I is due to the spinning cylinder and the bullet, namely

I =

1

MR2 + mR2

 

2

 

 

 

 

 

 

 

 

Thus

µ

2M + m R2

!

mvR =

 

 

 

 

1

 

 

 

giving

 

 

 

 

 

mv

 

! =

 

 

 

 

21 M + m¥ R

 

 

 

 

 

 

 

 

 

Chapter 12

OSCILLATIONS

77

78

CHAPTER 12. OSCILLATIONS

1.An object of mass m oscillates on the end of a spring with spring constant k. Derive a formula for the time it takes the spring to stretch from its equilibrium position to the point of maximum extension. Check that your answer has the correct units.

SOLUTION

The frequency of a spring, with mass m on one end is

! = s

 

 

and ! = T

 

m

 

 

k

2º

The time for one complete cycle is

T = 2ºr

 

 

k

 

 

 

 

m

The time for a quarter cycle is

 

 

 

 

4 =

2 r

 

 

 

 

k

 

T

º

 

m

 

Check units:

The units of k are N m°1 (because F = °kx for a spring). Thus the

units of

q

mk

are

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kg

 

=

 

 

kg

 

 

 

 

= p

 

= sec

 

 

 

 

 

 

 

 

 

 

sec2

 

 

N m°

1

skg m sec°

2

m°

1

 

 

 

 

 

 

 

 

 

 

 

 

 

which are the correct units for the time T4 .

79

2.An object of mass m oscillates at the end of a spring with spring constant k and amplitude A. Derive a formula for the speed of the object when it is at a distance d from the equilibrium position. Check that your answer has the correct units.

SOLUTION

Conservation of energy is

 

 

 

 

Ui + Ki = Uf + Kf

 

 

 

with U =

1 kx2

for a spring. At the point of maximum extension

 

2

 

 

 

 

 

 

 

 

 

 

 

x = A and v = 0 giving

 

 

 

 

 

 

 

 

 

 

 

1

kA2 + 0 =

 

1

kd2 +

1

mv2

 

 

2

2

2

 

 

 

 

 

 

 

 

 

 

 

 

mv2 = k(A2 ° d2)

 

 

 

 

v =

s

 

 

 

 

 

 

 

 

m(A2

° d2)

 

 

 

 

 

 

 

 

 

k

 

 

 

Check units:

The units of k are N m°1 (because F = °kx for a spring). Thus the q

units of mk (A2 ° d2) are

ss

N m°1 m2

=

kg m sec°2 m°1 m2

kg

 

kg

 

 

which are the correct units for speed v.

p

= m2 sec°2 = m sec°1

80

CHAPTER 12. OSCILLATIONS

3.A block of mass m is connected to a spring with spring constant k, and oscillates on a horizontal, frictionless surface. The other end of the spring is Øxed to a wall. If the amplitude of oscillation is A, derive a formula for the speed of the block as a function of x, the displacement from equilibrium. (Assume the mass of the spring is negligible.)

SOLUTION

The position as a function of time is

x = A cos !t

q

with ! = mk . The speed is

v = dxdt = °A! sin !t

giving the total energy

E= K + U = 12mv2 + 12kx2

=12mA2!2 sin2 !t + 12kA2 cos2 !t

=12mA2 mk sin2 !t + 12kA2 cos2 !t

=12kA2(sin2 !t + cos2 !t)

=12kA2

(Alternative derivation:

E = 12 mv2 + 12 kx2; when v = 0, x = A ) E = 12 kA2).

The energy is constant and always has this value. Thus

1

=

1

 

 

1

 

mv2

 

 

kA2 °

 

kx2

2

2

2

 

v2

=

 

k

(A2 ° x2)

 

 

 

 

m

s

v = ß mk (A2 ° x2)