Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VM.docx
Скачиваний:
7
Добавлен:
27.09.2019
Размер:
1.28 Mб
Скачать

3) Рациональные дроби.

Опр. , где Pn(z), Qm(z) многочлены, наз. рациональной дробью.

n>=mдробь неправильная; n<m – правильная.

Разложение правильной рац. дроби с комплексными коэф. на сумму простейших дробей.

Если - правильная дробь, то , где

z1, z2,…, zlразл. компл. корни

k1, k2,…, kl – их кратности

то сущ. Такие компл. числа Aik, где i=1,2,…,l; k=1,2,…,ki, то тогда

Разложение простой рац. дроби с действ. коэф. на сумму простейших дробей с действ. коэф.

Пусть - правильная дробь,

X1, x2,…, xl – разл. Компл. Корни

k1, k2,…, kl – их кратности

Билет 38.2

pi2-4qi<0 для i=1…s

R1, R2,…,Rs – кратности пар корней, тогда

+Метод неопределенных коэффициентов + Метод частных значений

Билет 39.

Условие независимости КРИ-2 от пути. Интегрирование полных дифференциалов.

Пусть ф-ции P(x,y),Q(x,y) и их частные производные dP/dy, dQ/dx непрерывны, замкнуты, ограничены односвязной областью Д, тогда следующие 4 условия эквивалентны:

1) , где L – любой замкнутый контур Д.

2) Не зависит от пути ab.

3) Pdx+Qdy=dU, U – однозначная ф-ция, определенная в области Д. \

4) dP/dy=dQ/dx в области Д.

Доказательство:

где .

Т.к. у ф-ции U существуют непрерывные частные произодные, то она дифиренцируема.

Нахождение ф-ции по ее полному дифференциалу.

Первый способ:

U(x,y)-?; dU=Pdx+Qdy; Pdx+Qdy*dQ/dx=dP/dy

Второй способ: ;

{ ; } ;

не зависит от пути.

Билет 40.

Физический смысл ПОВИ-2 – поток жидкости через пов-ть в единицу времени.

M (x,y,z) – вектор скорости жидкости. a (M) = P(x,y,z)i +Q (x,y,z)j + R(x,y,z)k

1) ; 2)

3) ; 4)

5)

ПОВИ-2 есть поток жидкости (поток векторного поля a(M)) через ориентированную поверхность .

Скалярная форма ПОВИ-2. ; ПОВИ-1 для ;

ПОВИ-2 для P(x,y,z), Q(x,y,z), R(x,y,z) x,y,z-пректируемое

E, F(x,y,z)=0; x=x(y,z); y=y(x,z): z=z(x,y)

Замечания: если прямая, параллельная к-л из координатных осей пересекает поверхность более чем в одной точке, то пов-ть следует разбить на несколько пов-тей и воспользоваться свойством аддитивности ПОВИ-2.

- ПОВИ-2

Формула Астроградского. Пусть V-ограниченая область, граница которой состоит из конечного числа кусочно-гладких поверхностей. Пусть ф-ции P,Q,R и их частные производные dP/dx; dQ/dy; dR/dz непрерывны в замкнутой области V, тогда справедливо следуещее равенство:

ПОВИ-2 берется по внешней стороне пов-ти , ограниченной областью V.

Если пов-ть не замкнутая, но ее можно замкнуть простыми пов-ми, то дополнить, применить формулу Астроградского к замкнутой пов-ти, вычислить ПОВИ-2 по простым дополняющим пов-м и из интеграла по замкнутой пов-ти вычесть результат для дополнительных пов-тей.

Билет 41

Скалярные поля. Производная по направлению. Градиент.

Пусть V – некоторая область в пространстве. Говорят, что в этой области задано скалярное поле, если каждой т. поставлено в соответствие некоторое число U(M) (пример – поле температур, освещенности). Скалярное поле не зависит от выбора системы координат. Поверхность или линия, на которой U(M) принимает постоянное значение называется поверхностью уровня скалярного поля.

Пусть U(M) – некоторое скалярное поле. - единственный фиксированный вектор. -фиксированая точка. ; ;

Если , то он называется производной скалярного поля U(M) по направлению в точке .

lnH-скорость изменения ф-ции U(m) по направлению в точке .

; ; ;

;

; ; ;

принимает наибольшее значение при , т.е. в направлении вектора gradU в т.

gradU указывает направление наибольшего роста поля в данной точке. | gradU| - скорость роста ф-ции U в данном направлении. Вектро gradU не зависит от выбора системы координат. Grad направлен по поверхности уровня в данной точке.

Билет 42

Векторные поля и их основные характеристики.

Говорят, что в V занадо векторное поле, если каждой т. поставлен в соответствие некоторый вектор . Физ. Векторные поля не зависят от выбора СК.

Векторная линия – кривая, в каждой точке M которой направлен по касательной к кривой. Векторная трубка – часть пространства, состоящая из целых векторных линий, каждая ВЛ или целиком лежит внутри этой трубки или находится вне ее.

Поток векторного поля. Дивергенция.

Дивиргенцией векторного поля называется скалярная ф-ция .

Формула Остроградского:

характеризует плотность источников поля в данной точке. Не зависит от выбора СК.

Формула Остроградского. Пусть V-ограниченая область, граница которой состоит из конечного числа кусочно-гладких поверхностей. Пусть ф-ции P,Q,R и их частные производные dP/dx; dQ/dy; dR/dz непрерывны в замкнутой области V, тогда справедливо следуещее равенство:

ПОВИ-2 берется по внешней стороне пов-ти , ограниченной областью V.

Если пов-ть не замкнутая, но ее можно замкнуть простыми пов-ми, то дополнить, применить формулу Астроградского к замкнутой пов-ти, вычислить ПОВИ-2 по простым дополняющим пов-м и из интеграла по замкнутой пов-ти вычесть результат для дополнительных пов-тей.

Билет 43

Циркуляция и ротор векторного поля.

Ротором (или вихрем) векторного поля называется вектор-функция

Ротор характеризует завихренность поля в данной точке.

Ротор является постоянным вектором, направленным вдоль оси вращения OZ. Его модуль равен удвоенной угловой скорости вращения тела.

Рассмотрим . С- кусочно гладкая пов-ть. КРИ-2 называется циркуляцией вдоль кривой L в направлении . Если -силовое поле, то его циркуляция – работа вдоль пути L.

(формула Стокса).

Формула Стокса.

Пусть гладкая xyz-проетируемая ориентированная поверхность ограничена кусочно гладким контуром и пусть в некоторой 3х мерной области, содержащей в себе поверхность , ф-ции P,Q,R и их частные проихводные непрерывны, тогда справедливо следующее: ,

где направление обхода контура осуществляется в положительном направлении.

Если граница состоит из нескольких контуров, то формула Стокса остается в силе. При этом в левой части надо написать сумму интегралов по всем контурам, пробегаемым в положительном направлении.

Для вычисления интегралов по замкнутому контуру можно выбрать любую поверхность , ограниченную контуром . Разумно выбирать поверхность простого вида.

Условие независимости КРИ-2 от пути интегрирования.

3х мерная область V называется поверхностно односвязной, если для любого замкнутого контура , лежащего в V внутри V найдется поверхность, ограниченная .

и их частные производные 1го порядка непрерывны в некоторой замкнутой ограниченной поверхностью односвязной области V, то след. 4 условия эквивалентны:

1) любого замкнутого кусочногладкого контура -

2) не зависит от пути соединения точек А и В.

3) полный диф-л, где

4)

Билет 44

Опера́тор на́бла (оператор Гамильтона) — векторный дифференциальный оператор, обозначаемый символом (набла)

Через оператор набла естественным способом выражаются основные операции векторного анализа: grad (градиент), div (дивергенция), rot (ротор), а также оператор Лапласа

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]