
- •Глава 1 введение
- •1.2 Основные сырьевые источники органических соединений
- •1.3 Классификация органических соединений
- •1.4 Номенклатура органических соединений
- •1.4.1 Тривиальная номенклатура
- •1.4.2 Рациональная номенклатура
- •1.4.3 Номенклатура июпак
- •1.4.3.1. Номенклатура июпак для алифатических углеводородов.
- •Глава 2 теоретические представления в органической химии
- •2.1 Типы химических связей
- •2.2 Образование ковалентных связей атомами углерода (σ- и π-ковалентные связи)
- •2.3 Общие представления о механизмах химических реакций
- •2.3.1 Свободнорадикальные реакции
- •2.3.2 Ионные реакции
- •2.4 Пространственное расположение атомов в молекуле. Конформация молекул
- •Глава 3 алифатические углеводороды алканы,алкены, алкины и алкадиены
- •3.1 Алканы: определениек,изомерия и номенклатура
- •3.1.2 Способы получения алканов
- •3.1.3 Химические свойства
- •Радикальное галогенирование
- •Нитрование
- •Сульфирование, сульфоокисление, сульфохлорирование
- •Окисление
- •Крекинг углеводородов при высоких температурах
- •Задачи для самопроверки
- •3.2 Алкены: определение, изомерия, номенклатура
- •3.2.1 Способы получения
- •3.2.2 Химические свойства
- •3.3. Алкадиены: определение, изомерия, номенклатура
- •3.3.1 Способы получения важнейших диенов
- •3.3.2 Химические особенности 1,3-алкадиенов
- •3.4. Алкины: определение, изомерия, номенклатура
- •3.4.1. Способы получения.
- •3.4.2. Химические свойства
- •Глава 4 карбоциклические соединения
- •4.1. Алициклический ряд: определение, изомерия, номенклатура
- •4.1.1 Способы получения
- •4.1.2. Химические свойства
- •4.1.3. Современные представления о строении моноциклоалканов.
- •4.2. Ароматические углеводороды
- •4.2.1. Строение бензола
- •4.2.2. Способы получения
- •4.2.3. Химические свойства
- •4.3.4. Правила ориентации в бензольном кольце
- •4.2.5. Механизм ориентирующего влияния заместителей
- •4.3. Многоядерные ароматические соединения с неконденсированными и конденсированными бензольными ядрами
- •4.3.1. Основные способы получения
- •4.3.2. Химические особенности
- •Функциональные производные углеводородов
- •Глава 5 галогенопроизводные
- •5.1. Галогенопроизводные: определение, изомерия, номенклатура
- •5.2. Способы получения
- •5..3 Химические свойства
- •Глава 6 кислородсодержащие органические соединения
- •6.1. Спирты: определение, изомерия, номенклатура
- •6.1.1. Способы получения
- •6.1.2 Физические свойства спиртов
- •6.1.3. Химические свойства
- •6.1.4 Понятие о непредельных и многоатомных спиртах
- •6.2. Фенолы: определение, изомерия, номенклатура
- •16.2.1. Способы получения
- •6.2.2. Химические свойства
- •6.3. Простые эфиры: определение, изомерия, номенклатура
- •6.3.1. Способы получения
- •6.3.2. Химические свойства
- •6.3.3. Окись этилена (эпоксисоединения)
- •6.4. Оксосоединения (альдегиды и кетоны)
- •6.4.1. Определение, изомерия и номенклатура оксосоединений
- •6.4.2. Способы получения
- •6.4.3. Химические свойства
- •6.4.4. Понятие о непредельных альдегидах и кетонах
- •6.4.5. Особенности получения и химические свойства хинонов
- •Задачи для самопроверки
- •6.5. Одно и многоосновные карбоновые кислоты и их производные: определение, изомерия, номенклатура
- •6.5.1. Способы получения
- •6.5.2. Химические свойства
- •6.5.3. Особенности предельных и непредельных кислот
- •Задачи для самопроверки
- •Глава 7. Серосодержащие соединения
- •7.1. Органические соединения двухвалентной серы (Тиолы, сульфиды, дисульфиды)
- •7.2. Сульфиновые кислоты и их производные
- •7.3. Сульфоновые кислоты и их производные. Сульфоны.
- •Глава 8. Азотсодержащие органические соединения
- •8.1 Нитросоединения: определение, изомерия, номенклатура.
- •8.1.1. Способы получения
- •8.1.2. Химические свойства
- •Задачи для самопроверки
- •8.2 Амины: определение, изомерия, номенклатура
- •8.2.1 Способы получения
- •8.2.2. Химические свойства
- •8.2.3. Понятие о диаминах
- •Задачи для самопроверки
- •8.3. Диазо- и азосоединения: определение, изомерия, номенклатура
- •8.3.1. Способы получения
- •8.3.2 Физические и химические свойства
- •II. Реакции без выделения азота
- •Задачи для самопроверки
- •Глава 9 . Гетерофункциональные соединеия
- •9.1. Гидроксикислоты: определение, изомерия, номенклатура
- •9.1.1. Способы получения
- •9.1.2. Химические свойства
- •9.1.3. Оптическая изомерия гидроксикислот
- •9.1.4. Ароматические гидроксикислоты и их производные
- •Задачи для самопроверки
- •9.2. Альдегидо- и кетокислоты: определение, изомерия, номенклатура
- •9.2.1. Способы получения
- •9.2.2. Химические особенности
- •9.2.3. Применение ацетоуксусного эфира в органическом синтезе
- •Задачи для самопроверки
- •9.3. Аминокислоты: определение, изомерия, номенклатура
- •9.3.1. Способы получения
- •9.3.2. Химические свойства
- •Задачи для самопроверки
- •Глава 10. Гетероциклические соединения
- •10.1. Определение и классификация гетероциклических соединений.
- •10.2. Пятичленные гетероциклические соединения: изомерия, номенклатура, ароматический характер.
- •10.2.1. Способы получения пятичленных гетероциклических соединений.
- •10.2.3. Химические свойства
- •10.3. Понятие о конденсированных гетероциклах (индол)
- •10.4. Шестичленные гетероциклические соединения: изомерия, номенклатура
- •10.4.1. Химические свойства.
- •Глава 11. Липиды
- •11.1.Определение, классификация изомерия, номенклатура
- •11.2. Простые липиды. (Жиры, масла)
- •10.3. Сложные липиды. Понятие о фосфолипидах.
- •10.4. Понятие о циклических липидах
- •Глава 12. Углеводы
- •12.1. Определение, классификация, изомерия, номенклатура.
- •12.2. Моносахариды: строение, оптическая изомерия.
- •12.3.Химические свойства моносахаридов.
- •12.4. Олигосахариды: особенности строения, химические свойства
- •12.5. Несахароподобные полисахариды: крахмал, гликоген, клетчатка.
- •Глава 13. Пептиды и белки
- •13.1. Протеиногенные аминокислоты
- •13.2. Понятие о строении пептидов.
- •13.3. Особенности строения белков
- •Глава 14. Нуклеиновые кислоты
- •14.1. Понятие о составе и строении нуклеиновых кислот
- •14.2. Классификация и биологическая роль нуклеиновых кислот
3.3. Алкадиены: определение, изомерия, номенклатура
Диеновые углеводороды имеют две двойные связи в молекуле и отвечают общей формуле СnH2n-2.
В зависимости от взаимного расположения двойных связей диеновые углеводороды можно разделить на три основных типа:
1) углеводороды с кумулированными (примыкающими к одному атому углерода) двойными связями – аллен и его гомологи;
2) углеводороды с сопряженными (конъюгированными) двойными связями – дивинил и его гомологи;
3) углеводороды с изолированными двойными связями.
Диеновые углеводороды по систематической номенклатуре называются так же, как и этиленовые углеводороды, только вместо суффикса «ен» ставится суффикс «адиен» (так как двойных связей две). Положение двойных связей, как обычно, показывают цифрами. Для некоторых диенов сохранились тривиальные или старые рациональные названия:
Диеновые углеводороды первых двух типов проявляют своеобразные свойства. Для углеводородов третьего типа характерны обычные реакции алкенов, только в них принимают участие не одна, а обе связи с большей или меньшей селективностью.
Наибольшего внимания заслуживают углеводороды с сопряженными двойными связями.
3.3.1 Способы получения важнейших диенов
Способы получения углеводородов ряда дивинила в большинстве случаев не отличаются от способов получения олефинов, только соответствующие реакции необходимо проводить дважды или в качестве исходного вещества применять соединения, уже содержащие двойную связь.
Дивинил и изопрен получают в промышленности дегидрированием соответственно бутано-бутиленовых или изопентан-изоамиленовых смесей обычно над катализаторами, содержащими Cr2O3:
2. Очень большую роль в промышленном производстве дивинила сыграл метод С. В. Лебедева:
2С2Н5ОН → СН2=СН–СН=СН2 + 2Н2О + Н2 (70% от теоретического)
3. Дивинил, изопрен, диизопропенил получают дегидратацией гликолей:
4. Хлорпрен получают присоединением хлористого водорода к винилацетилену:
Физические свойства 1,3-алкадиенов
Дивинил при обычных условиях – газ. Изопрен и другие простейшие алкадиены – жидкости. Обычные закономерности, свойственные гомологическим рядам углеводородов, действуют и в этом ряду.
Для алкадиенов с сопряженными двойными связями характерны аномально высокие показатели преломления света. Благодаря этой особенности найденные молекулярные рефракции алкадиенов значительно больше вычисленных. Разница между найденной и вычисленной величинами составляет обычно 1 ÷ 1,5 единицы. Она называется молекулярной экзальтацией.
3.3.2 Химические особенности 1,3-алкадиенов
Две сопряженные π-связи образуют общее электронное облако – все четыре углеродных атома находятся в состоянии sp2-гибридизации (см. главу 2). Это приводит к укорочению простой связи (до 0,146 нм) и к стабилизации молекулы. Так, например, энергия образования молекулы дивинила на 14,6 кДж/моль больше по сравнению с вычисленной энергией образования углеводорода того же состава, но без учета сопряжения двойных связей. Эту разность называют энергией резонанса. Эта особенность в строении диеновых углеводородов делает их способными присоединять различные вещества не только по одной из двойных связей, но и к крайним атомам сопряженной системы – в 1,4-положения с перемещением двойной связи. Такое присоединение определяется динамическим эффектом сопряжения, т.е. перераспределением электронной плотности молекулы под влиянием атакующего агента.
Гидрирование
Каталитически возбужденный водород присоединяется в 1,2- и 1,4-положения:
Галогенирование
Галогены также способны присоединяться к сопряженным системам в 1,2- и 1,4-положения:
Как и в случае этиленовых углеводородов, присоединение может проходить как по ионному, так и по радикальному механизму.
При ионном механизме присоединения первоначально возникающий π-комплекс (I) быстро превращается в сопряженный карбониевый ион с положительным зарядом на втором и четвертом углеродных атомах. Этот ион можно изобразить или двумя граничными формулами (II) или одной формулой (III). Этот карбкатион присоединяет анион галогена с образованием продуктов 1,2- и 1,4-присоединения:
Гидрогалогенирование
В реакциях присоединения галогеноводородов действуют те же закономерности:
Гипогалогенирование
Гипогалогенитные кислоты и их эфиры присоединяются преимущественно в 1,2-положение:
Димеризация
При нагревании молекулы диеновых углеводородов способны присоединяться друг к другу таким образом, что одна из них реагирует в 1,2-, а другая в 1,4- положениях. Одновременно в небольших количествах образуется продукт, когда обе молекулы реагируют в 1,4-положениие:
Диеновый синтез
Диеновые углеводороды особенно легко димеризуются с молекулами, имеющими активированную двойную связь. Реакции этого типа называются диеновым синтезом или реакциями Дильса-Альдера:
Полимеризация
Важной особенностью диеновых углеводородов с сопряженными связями является их способность полимеризоваться в каучукоподобные продукты.
Промышленный интерес представляет цепная полимеризация диеновых углеводородов под влиянием катализаторов или инициаторов. В качестве катализаторов используются щелочные металлы, металлоорганические соединения, в качестве инициаторов – органические и неорганические пероксиды.
При полимеризации отдельные молекулы мономеров могут соединяться друг с другом в 1,2-, в 1,4-положения или одна молекула реагирует в 1,2-, а другая – в 1,4- положение:
Скорость полимеризации зависит от строения диенов и условий полимеризации. Заместители в середине молекулы облегчают, а на конце молекулы затрудняют полимеризацию. Изопрен полимеризуется быстрее, а пиперилен медленнее, чем дивинил.
Наиболее ценные продукты получаются при стереорегулярной (пространственно упорядоченной) полимеризации в 1.4-положение с образованием цис-конфигурации каждого остатка:
По химическому составу и строению натуральный каучук представляет собой стереорегулярный цис-полимер изопрена.
Строение каучука и других полимеров диеновых углеводородов было доказано методом озонирования (по Гарриесу). Получение при озонолизе левулинового альдегида подтверждает упорядоченное 1,4-строение.
Различные виды синтетического и натурального каучука широко применяются в промышленности. Пионером в организации крупного промышленного производства синтетического каучука был Советский Союз.
ЗАДАЧИ ДЛЯ САМОПРОВЕРКИ
1. Рассчитать массу (г) 1,3-бутадиена, образующегося в результате дегидрирования 20 дм3 бутана (н. у.), если выход бутадиена составляет 50%.
2. При пропускании 200 дм3 (при н. у.) паров этилового спирта над дегидратирующим и дегидрирующим катализаторами было получено 90 дм3 газообразного (при н. у.) дивинила. Определить выход реакции.
3. Рассчитайте максимальную массу (г) брома, который может присоединиться к 1,3-бутадиену, если его объем составляет 12 дм3 (условия нормальные).
4. При окислении по Гарриесу непредельного углеводорода получен ацетон, масса которого оказалась равной 29 г. Определить массу (в г) непредельного углеводорода, вступившего в реакцию, исходя из предположения, что выход продуктов озонолиза – количественный.
5. Назовите углеводород по международной номенклатуре
6. Написать структурную формулу 2,5-диметил-4-изопропил-1,5-гексадиена.