
- •Предмет физики. Методы физического исследования. Физические модели. Роль физики в становлении инженера.
- •2. Элементы кинематики материальной точки. Система отсчёта. Радиус-вектор. Скорость и ускорение как производные радиус-вектора по времени. Уравнения движения. Одномерное движение.
- •3. Криволинейное движение. Нормальное и тангенциальное ускорения.
- •4. Элементы кинематики вращательного движения: угловая скорость и угловое ускорение, их связь с линейными скоростями и ускорениями.
- •5. Первый закон Ньютона и понятие инерциальной и неинерциальной системы отсчёта. Масса и импульс. Понятие состояния в классической механике.
- •6. Второй закон Ньютона, как уравнение движения. Сила, как производная импульса. Закон сохранения импульса.
- •7. Третий закон Ньютона.
- •8. Механическая система. Центр инерции (масс) механической системы. Теорема о движении центра инерции.
- •9. Работа силы и её выражение через криволинейный интеграл. Консервативные и неконсервативные силы. Работа силы (сил) над одной точкой
- •10. Кинетическая энергия. Потенциальная энергия материальной точки во внешнем силовом поле. Понятие о градиенте скалярной функции координат.
- •11. Закон сохранения энергии в механике. Общефизический закон сохранения энергии.
- •12. Удар абсолютно упругих и неупругих тел.
- •13. Момент силы и момент импульса.
- •14. Уравнение динамики вращательного движения твёрдого тела.
- •15. Момент инерции материальной точки.
- •16. Момент инерции тела относительно неподвижной оси. Теорема Штейнера.
- •17. Момент импульса механической системы. Закон сохранения момента импульса.
- •18. Кинетическая энергия вращающегося тела.
- •19. Неинерциальные системы отсчёта. Сила инерции. Сила Кориолиса. Основной закон динамики в неинерциальных системах.
- •20. Преобразования Галилея. Механический принцип относительности.
- •21. Постулаты специальной теории относительности.
- •22. Преобразования Лоренца. Относительность длин и промежутков времени. Релятивистский закон сложения скоростей.
- •23. Релятивистский импульс. Основной закон релятивистской динамики материальной точки.
- •24. Взаимосвязь массы и энергии. Соотношение между полной энергией и импульсом частицы. Релятивистское выражение для кинетической энергии.
- •25. Статистический и термодинамический методы исследования.Давление газа с точки зрения мкт
- •26. Уравнение состояния идеального газа
- •27.Средняя кинетическая энергия. Молекулярно кинетическое толкование абсолютной температуры
- •28.Работа газа. Количество теплоты. Теплоемкость
- •30.Число степеней свободы. Закон равномерного распределения энергии по степеням свободы
- •31.Барометрическая формула. Распределение Больцмана
- •32.Принцип детального равновесия. Среднее число столкновений и средняя длина свободного пробега молекул
- •33.Опытные законы диффузии, теплопроводности и внутреннего трения.
- •34.Молекулярно- кинетическая теория явлений переноса в неравновесной системе
- •35. Работа газа при изменении его объема. Внутренняя энергия термодинамической системы.
- •36.Количество теплоты. Первое начало термодинамики. Применение первого начала к изопроцессам
- •37. Теплоемкость. Удельная и молярная теплоемкости. Зависимость теплоемкости идеального газа от вида процесса. Недостаточность классической теории теплоемкости.
- •38.Адиабатный процесс. Уравнение Паусона
- •39. Обратимые и необратимые тепловые процессы. Круговые процессы.
- •40.Цикл Карно и его кпд. Тепловые двигатели и холодильные машины
- •41. Второе начало термодинамики. Приведенная теплота
- •42. Энтропия. Принцип возрастания энтропии. Энтропия идеального газа
- •43. Третье начало термодинамики
- •44. Термодинамическая вероятность. Определение энтропии неравновесной системы через термодинамическую вероятность состояния.
- •45. Силы и потенциальная энергия межмолекулярного взаимодействия. Эффективный диаметр молекул.
- •46.Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и их анализ
- •47. Метастабильные состояния. Критическая тачка. Внутренняя энергия реальных газов
- •48. Понятие фазы, фазового равновесия и превращения. Правила фаз Гиббса
- •49.Фазовый переход первого и второго рода. Диаграммы состояния. Тройная точка.
14. Уравнение динамики вращательного движения твёрдого тела.
В
ыведем
уравнение динамики вращательного
движения тела. Из выражений (4.1), (4.2) и
(4.3) следует, что скорость изменения
момента импульса i-й
материальной точки определяется
следующим
образом:
(4.6)
С
ложим
почленно уравнения (4.6), записанные для
каждой из материальных точек
тела:
(4.7)
В
екторная
сумма моментов Mi всех
внешних сил, приложенных к телу,
называетсярезультирующим,
или главным,
моментом M внешних
сил относительно точки О:
В
екторная
сумма моментов импульса Li всех
материальных точек тела называетсямоментом
импульса L тела относительно
точки О:
Так как производная от суммы равна сумме производных от всех слагаемых, то
Наконец,
векторная сумма моментов относительно
точки О всех внутренних сил Fikвзаимодействия
между точками тела равна нулю, т.е.
т
ак
как по третьему закону Ньютона
силы Fik и Fki численно
равны, имеют общую линию действия, но
направлены в противоположные стороны
(рис. 4.4). Поэтому их моменты Mik =
[ri,
Fik]
и Mki =
[rk,
Fki]
относительно точки О численно равны и
противоположны по направлению (на рис.
4.4 точки mi, mk и
О лежат в горизонтальной плоскости, а
векторы Mik и Mkiперпендикулярны
этой плоскости). Действительно, rk =
ri +
rki,
гдеrki -
вектор, проведенный из точки mi в
точку mk.
Поэтому Mki =
[rk,
Fki]
+ [rki,
Fki]
= -[ri,
Fik]
= -Mik,
так как векторное произведение
векторов rki и Fki,
направленных вдоль одной прямой, равно
нулю. На основании
изложенного уравнение (4.7) можно записать
в следующем
виде:
(4.8)
Таким образом, скорость изменения момента импульса тела, вращающегося вокруг неподвижной точки, равна результирующему моменту относительно этой точки всех внешних сил, приложенных к телу. Полученный результат называется основным законом динамики вращательного движения тела, закрепленного в одной неподвижной точке. Момент импульса является основной динамической характеристикой твердого тела, вращающегося вокруг неподвижной точки.
15. Момент инерции материальной точки.
Момент инерции материальной точки,
Момент
инерции м.т.
(
)
относительно полюса
– скалярная величина, равная произведению
массы этой точки на квадрат расстояния
до полюса:
(1)
(2)
Момент инерции системы материальных точек
Тело можно представить состоящим из большого числа м.т., тогда момент инерции системы м.т. равен:
,
(3)
где
- масса i
- ой м.т.
- ее расстояние до
полюса О.
Моментом инерции системы м.т. или тела относительно полюса называют алгебраическую сумму произведений масс м.т., из которых состоит тело, на квадрат расстояния их до полюса О.