Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
LinAl_otvety.docx
Скачиваний:
59
Добавлен:
27.09.2019
Размер:
322.75 Кб
Скачать
  1. Системы линейных алгебраических уравнений. Основные понятия. Матричная запись системы

Совокупность уравнений

относительна неизвестных x1x2, ..., xn-1xn называется системой линейных алгебраических уравнений.

Числа aij — коэффициенты системыbi— правые части системы i = 1, 2, ..., m; j = 1, 2, ..., n.

Совокупность значений неизвестных, удовлетворяющая всем уравнениям системы, называется решением системы.

Система, имеющая хотя бы одно решение, называется совместной. Система, у которой нет решений, называется несовместной.

Каждое решение совместной системы называется частным решением. Совокупность всех решений совместной системы называется общим решением.

Если среди правых частей bi системы есть хоть одна, отличная от нуля, то система называется неоднородной системой линейных уравнений.

Если все правые части системы равны нулю, то система называется однородной.

Система линейных уравнений может быть записана в матричной форме A·x = b:

Здесь A — матрица системы, b — правая часть системы , x— искомое решение системы.

Иногда удобно записывать систему линейных уравнений в другой матричной форме:

A(1)x1 + A(2)x2 + ... + A(n)xn = b. Здесь  A(1), A(2), ... , A(n) — столбцы матрицы системы.

Матрица Ap называется расширенной матрицей системы.

Если исследуется неоднородная система A·x = bb ≠ 0, то система A·x =0 называется приведенной однородной системой для системы A·x = b.

  1. Критерий совместности системы. Теорема Кронекера – Капелли

  • Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу матрицы системы.

  • Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]