
- •Билет №2 Ограниченность функции, непрерывной на отрезке, достижение точных верхней и нижней граней.
- •Билет №3 Теорема о промежуточных значениях непрерывной функции.
- •Билет №4 Теорема о среднем Ролля, Лагранжа и Коши для дифференцируемых функций. Теорема Ролля.
- •Теорема Лагранжа.
- •Теорема Коши.
- •Теорема. Формула Тейлора с остаточным членом в форме Пеано.
- •Билет №6 Исследование функций одной переменной при помощи первой и второй производных на монотонность, локальные экстремумы, выпуклость. Теорема1
- •Теорема 2. Ферма.
- •Теорема 3.(достаточное условие строгого экстремума)
- •Теорема 4.
- •Теорема 1 (условие выпуклости функций).
- •Билет №8 Достаточные условия дифференцируемости функции нескольких переменных.
- •Билет №12 Равномерная сходимость функциональных последовательностей и рядов.
- •Теорема 1 (критерий Коши равномерной сходимости последовательности).
- •Теорема 1.
- •Теорема 2.
- •Теорема 3
- •Билет №13 Степенные ряды.
- •Билет №14 Формула Грина.
- •Потенциальные векторные поля на плоскости.
- •Билет №15 Формула Остроградского-Гаусса.
- •Соленоидальные векторные поля.
- •Билет №16 Формула Стокса.
- •Теорема 1 (Стокса).
- •Билет №17 Теорема о сходимости ряда Фурье в точке.
- •Билет №18 Достаточные условия равномерной сходимости тригонометрического ряда Фурье.
- •Билет №19 Непрерывность преобразования Фурье абсолютно интегрируемой функции.
- •Лемма 4.
- •Преобразования Фурье производной и производная преобразования Фурье.
- •Билет №20 Углы между прямыми и плоскостями.
- •Формула расстояния от точки до прямой и плоскости, между прямыми в пространстве.
- •Билет №21 Общее решение системы линейных алгебраических уравнений.
- •Теорема Кронекера-Капелли.
- •Билет №22 Линейное отображение конечномерных линейных пространств, его матрица.
- •Свойства собственных векторов и собственных значений линейных преобразований.
- •Билет №23 Самосопряженные преобразования евклидовых пространств, свойства их собственных значений и собственных векторов.
- •Билет №24 Приведение квадратичных форм в линейном пространстве к каноническому виду.
- •Билет №25 Положительно определенные квадратичные формы.
- •Билет №26 Когда правая часть является квазимногочленом.
- •Билет №27 Когда существует базис из собственных векторов матрицы коэффициентов системы.
- •Когда не существует базис из собственных векторов матрицы коэффициентов системы.
- •Билет №28 Линейные обыкновенные дифференциальные уравнения с переменными коэффициентами.
- •Фундаментальная система решений.
- •Определитель Вронского. Формула Лиувилля-Остроградского.
- •Билет №29 Простейшая задача вариационного исчисления. Уравнение Эйлера.
- •Билет №32 Неравенство Чебышева и закон больших чисел. Теорема.
- •Неравенство Чебышева.
- •Закон больших чисел.
- •Предельная теорема Пуассона.
- •Билет №33 Дифференцируемость функции комплексного переменного. Условия Коши-Римана.
- •Интегральная теорема Коши.
- •Билет №34 Интегральная формула Коши.
- •Разложение функции, регулярной в окрестности точки, в ряд Тейлора.
- •Билет №35 Разложение функции, регулярной в кольце в ряд Лорана.
- •Изолированные особые точки однозначного характера.
- •Билет №36 Вычеты.
- •Вычисление интегралов по замкнутому контуру при помощи вычетов.
Изолированные особые точки однозначного характера.
Определение
1. Пусть функция f не регулярна в
точке
,
но регулярна в некоторой проколотой
окрестности этой точки. Тогда точку a
называют изолированной особой точкой
функции f.
Определение
2. Изолированная точка
функции
называется
1)устранимой
особой точкой, если существует конечный
предел
;
2)полюсом,
если существует
;
3)существенно
особой точкой, если не существует
конечного или бесконечного предела
.
Билет №36 Вычеты.
Править
Определение
1. Пусть
-
изолированная особая точка регулярной
функции
.
Пусть
-
положительно ориетированная окружность,
причем 0 < r < ρ. Тогда вычетом
функции f в точке a называется
число
Вычисление интегралов по замкнутому контуру при помощи вычетов.
Пусть
дана область
с
кусочно-гладкой положительно ориетированной
границей Γ. Пусть функция f определена
и регулярна на G всюду, за исключением
конечного числа изолированных особых
точек
и
пусть к тому же функция f непрерывно
продолжима на границу области G.
Тогда справедлива формула
.
Доказательство.
Пусть
область G ограничена. Так как число
особых точек
конечно,
то существует число r > 0 такое, что
,
причем замыкание этих кругов попарно
не пересекаются. Определим множество
.
Множество
тоже
является областью с кусочно-гладкой
границей
,
где γk суть окружности
,
ориентированные по ходу часовой стрелки.
Получили, что f регулярна на
и
непрерывна на
что и дает формулу 14.