
- •Билет№1.
- •2.Классификация печатных плат и методов изготовления.
- •3. Контроль качества паяных соединений.
- •Билет№2
- •2.Элементы печатных плат. Преимущества печатного монтажа.
- •3. Способы монтажной сварки.Уз-микросварка.
- •Билет 3
- •2.Материалы оснований и проводящих слоев печатных плат.
- •3. Термокомпрессионная сварка.
- •Билет 4.
- •2.Формирование рисунка пп, трафаретная и офсетная печать.
- •3.Классификация механических соединений. Неразъемные соединения.
- •Билет № 5
- •2. Травление меди с пробельных мест.
- •3. Разъемные соединения. Методы стопорения резьбы.
- •Билет №6
- •2. Химическая и гальваническая металлизация печатных плат.
- •Билет №7
- •2.Технология механической обработки пп (получение заготовок, формирование контура и др.).
- •3.Технология соединения склеиванием. Виды и характеристики клеев.
- •Билет № 8
- •2. Сверление отверстий в печатных платах. Требования к сверлам.
- •Билет 9
- •2.Структура процесса сборки электронных блоков на печатных платах.
- •3. Лазерная пайка поверхностно монтируемых компонентов.
- •Билет 10
- •2.Лазерное сверление отверстий в пп. Лазерная литография.
- •3.Оптимизация тп по производительности и себестоимости. Определение размера критической партии.
- •Билет 11
- •2.Технологический процесс изготовления односторонних пп
- •3.Соединение накруткой и обжимкой.
- •Билет 12
- •2. Технологический процесс изготовления двухсторонних пп.
- •3. Особенности и преимущества поверхностного монтажа.
- •Билет 13
- •2.Методы изготовления многослойных пп.
- •3. Компоненты и корпуса для поверхностного монтажа.
- •Билет№ 14
- •2.Технология рельефных плат.
- •3.Основные операции тп поверхностного монтажа.
- •Билет№ 15
- •2.Методы герметизации блоков рэс
- •3.Поверхностный монтаж, нанесение и сушка адгезива. Требования к адгезивам.
- •Билет 16
- •2. Термозвуковая сварка. Сварка расщепленным электродом.
- •3. Поверхностный монтаж: припойные пасты и методы нанесения паст.
- •Билет № 17
- •2. Классификация и параметры намоточных изделий.
- •Билет № 18
- •2. Герметизация пропиткой. Методы контроля герметичности
- •3. Классификация способов групповой пайки. Критерии эффективности групповой пайки.
- •Билет № 19
- •2.Тормозные устройства. Методы измерения натяжения провода.
- •3. Пайка погружением и волновые способы пайки
- •Билет № 20
- •2.Классификация печатных плат и методов их изготовления. Односторонние, двухсторонние и многослойные печатные платы.
- •3.Групповая пайка, методы формирования волны припоя.
- •Билет №21
- •2.Классификация электрических монтажных соединений. Параметры электрических соединений.
- •3.Припои и флюсы.
- •Билет №22
- •2.Элементы печатных плат. Преимущества печатного монтажа.
- •3.Физико-химическое основы процесса пайки.
- •Билет 23
- •2. Фотолитография. Фоторезисты. Методы нанесения фоторезистов на печатные платы.
- •3. Способы нагрева при пайке (индукционный (токами вч), ик – и др.)
- •Билет 24
- •2. Пайка групповым инструментом и в парогазовой фазе.
- •3. Объемная герметизация
- •Билет 25.
- •2. Пайка. Способы удаления загрязнения и окисных пленок.
- •3. Оптимизация тп по производительности. Определение размера критической партии.
- •Билет 26.
- •2. Подготовительные операции по групповой пайке
- •3. Элементы катушек. Материалы проводов, каркасов, прокладок и сердечников.
- •Билет 27
- •2. Формовка и установка эрэ на платы.
- •3. Межблочный монтаж. Жгутовой монтаж
- •Билет №28
- •2. Марки проводов для намоточных изделий
- •3. Входной контроль эрэ
- •Билет №29
- •2.Межблочный монтаж. Подготовка проводов к монтажу
- •3.Оборудование для намотки. Контроль обрыва провода. Контроль намоточных
- •Билет №30
- •2.Аргонно-дуговая , электродуговая сварка
- •3.Монтаж плоскими ленточными кабелями
3.Оборудование для намотки. Контроль обрыва провода. Контроль намоточных
изделий.
Внутренние обрывы в обмотках, намотанных проводом диаметром более 0,1 мм, контролируют автоматически в процессе изготовления катушек. При обрыве провода специально созданная электрическая цепь разомкнется, будет подан световой сигнал.
Для больших скоростей наматывания применяют бесконтактный контроль обрыва провода с помощью устройства, состоящего из фотодатчика, регистрирующего скорость вращения бобины с проводом. Световой поток, падая на фотосопротивление, создает напряжение переменной частоты, которое подается на электронный усилитель. При обрыве провода, наматываемого на каркас катушки, скорость вращения бобины резко снижается, пропорционально уменьшается освещенность фотосопротивления, что уменьшает переменное напряжение, подаваемое на вход усилителя. В результате этого система управления отключает электродвигатель.
Для контроля количества витков и отсутствия короткозамкнутых витков используют устройство, содержащее сердечник, эталонную обмотку и обмотку возбуждения, питаемую от генератора. При подключении испытуемой катушки к прибору в ней наводится ЭДС. При равенстве витков в эталонной и проверяемой катушках равны ЭДС, наводимые в обмотках, а при наличии короткозамкнутых витков снижается добротность, появляется разностный ток.
Билет №30
2.Аргонно-дуговая , электродуговая сварка
Аргонодуговая сварка – дуговая сварка в среде инертного газа аргона. Может осуществляться плавящимся или неплавящимся электродом. В качестве неплавящегося электрода обычно используется вольфрамовый электрод.
Общие характеристики аргонодуговой сварки
Аргон практически не вступает в химические взаимодействия с расплавленным металлом и другими газами в зоне горения дуги. Будучи на 38% тяжелее воздуха, аргон вытесняет его из зоны сварки и надежно изолирует сварочную ванну от контакта с атмосферой.
При аргонодуговой сварке возможен крупнокапельный или струйный перенос электродного металла. При крупнокапельном переносе процесс сварки неустойчивый, с большим разбрызгиванием. Его технологические характеристики хуже, чем при полуавтоматической сварке в углекислом газе, так как вследствие меньшего давления в дуге капли вырастают до больших размеров. Диапазон токов для крупнокапельного переноса достаточно велик, например для проволоки диаметром d = 1,6 мм Iсв = 120–240А. При силе тока Iсв больше 260А происходит резкий переход к струйному переносу, стабильность процесса сварки улучшается, разбрызгивание уменьшается. Однако такие токи не всегда соответствуют технологическим требованиям. Поэтому более рационально для обеспечения стабильности процесса использовать импульсные источники питания дуги, которые обеспечивают переход к струйному переносу на токах около Iсв ≈ 100А
Область применения и преимущества аргонодуговой сварки
Основная область применения аргонодуговой сварки неплавящимся электродом – соединения из легированных сталей и цветных металлов. При малых толщинах аргонная сварка может выполняться без присадки. Способ сварки обеспечивает хорошее качество и формирование сварных швов, позволяет точно поддерживать глубину проплавления металла, что очень важно при сварке тонкого металла при одностороннем доступе к поверхности изделия. Он получил широкое распространение при сварке неповоротных стыков труб, для чего разработаны различные конструкции сварочных автоматов. В этом виде сварку иногда называют орбитальной. Сварка неплавящимся электродом – один из основных способов соединения титановых и алюминиевых сплавов.
Аргоновая сварка плавящимся электродом используется при сварке нержавеющих сталей и алюминия. Однако объем ее применения относительно невелик.
Недостатки аргонодуговой сварки
Недостатками аргонодуговой сварки являются невысокая производительность при использовании ручного варианта. Применение же автоматической сварки не всегда возможно для коротких и разноориентированных швов
электродуговая
Источником теплоты является электрическая дуга, возникающая между торцом электрода и свариваемым изделием при протекании сварочного тока в результате замыкания внешней цепи электросварочного аппарата. Сопротивление электрической дуги больше, чем сопротивление сварочного электрода и проводов, поэтому бо́льшая часть тепловой энергии электрического тока выделяется именно в плазму электрической дуги. Этот постоянный приток тепловой энергии поддерживает плазму (электрическую дугу) от распада.Выделяющееся тепло (в том числе за счёт теплового излучения из плазмы) нагревает торец электрода и оплавляет свариваемые поверхности, что приводит к образованию сварочной ванны — объёма жидкого металла. В процессе остывания и кристаллизации сварочной ванны образуется сварное соединение. Основными разновидностями электродуговой сварки являются: ручная дуговая сварка, сварка неплавящимся электродом, сварка плавящимся электродом, сварка под флюсом, электрошлаковая сварка.