Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
khimia.docx
Скачиваний:
1
Добавлен:
26.09.2019
Размер:
286.53 Кб
Скачать

Билет12.

Гетероциклические соединения (гетероциклы) — органические соединения, содержащие циклы, в состав которых наряду с углеродом входят и атомы других элементов. Могут рассматриваться как карбоциклические соединения с гетерозаместителями (гетероатомами) в цикле. Наиболее разнообразны и хорошо изучены ароматические азотсодержащие гетероциклические соединения. Предельные случаи гетероциклических соединений — соединения, не содержащие атомов углерода в цикле, например, пентазол. Гетероциклические ароматические соединения. В ряду этих соединений встречаются оба вида сопряжения. Пи-пи-сопряжение характерно для шестичленных гетероциклов с одним или несколькими гетероатомами. Простейшим их представителем является пиридин, содержащий в цикле один атом азота. Атом азота находится в состоянии sp2-гибридизации (две из трех sp2-гибридных орбиталей образуют сигма-связи). Он поставляет в ароматический секстет один р-электрон. Неподеленная пара электронов на sр2-гибридной орбитали обусловливает свойства пиридина как основания. Атом азота с таким электронным строением принято называть пиридиновым. В результате большей электроотрицательности по сравнению с атомом углерода пиридиновый атом азота понижает электронную плотность на атомах углерода ароматического кольца. Поэтому системы с пиридиновым атомом азота называют пи-недостаточными. Кроме пиридина, примером таких систем служит пиримидин, содержащий два пиридиновых атома азота. р-пи-сопряжение осуществляется в пятичленных гетероциклах с атомами азота, кислорода, серы. Довольно часто в составе биологически значимых соединений встречается гетероцикл с одним атомом азота — пиррол. В пирроле от атома азота в ароматический секстет включается находящаяся на негибридизованной р-орбитали пара электронов, три электрона на sp2-гибридных орбиталях участвуют в образовании трех сигма-связей. Атом азота в таком электронном состоянии получил название пиррольного. Шестиэлектронное облако в пирроле делокализовано на пяти атомах цикла, поэтому пиррол представляет собой пи-избыточную систему. В фуране и тиофене ароматический секстет также включает неподеленную пару электронов негибридизованной р-АО кислорода и серы соответственно, в имидазоле два атома азота вносят разный вклад в образование делокализованного электронного облака: пиррольный атом азота поставляет пару n-электронов, а пиридиновый — один р-электрон. В пиррольном и пиридиновом атомах азота электроны находятся на негибридизованных р-АО. Ароматическим характером обладает также пурин, представляющий собой конденсированную систему из двух гетероциклов — пиримидина и имидазола. Делокализованное электронное облако в пурине включает 10 пи-электронов.

Гемин и хлорофилл. Триптофан вследствие многообразия связанных с ним метаболических реакций и продуктов был одной из первых аминокислот, которые были отнесены к незаменимым. При введении с пищей [14C]-триптофана большая часть изотопа включается в состав белков, однако существенная часть обнаруживается в моче в составе различных катаболитов. Атомы углерода боковой цепи и ароматического кольца могут полностью переходить в амфиболические интермедиаты при трансформации триптофана по кинуренин - антранилат ному пути ( Катаболизм аминокислот, образующих ацетил-CoA: метаболическая карта ), играющему важную роль в деградации триптофана и в его превращении в никотинамид. У многих животных превращение триптофана в никотиновую кислоту делает необязательным поступление этого витамина с пищей. У крыс, кроликов, собак и свиней пищевой триптофан может полностью заменить этот витамин; у человека, а также у ряда животных избыточное потребление триптофана с пищей повышает экскрецию с мочой производных никотиновой кислоты.

билет 13. Нуклеи́новая кисло́та (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.

На сегодняшний день в процессе выращивания различных сельскохозяйственных культур активно применяются различные биологически активные вещества. К данной категории веществ можно отнести: фитогормоны, пестициды, фунгициды и удобрения.

К фитогормонам относятся ауксины, гиббереллины, цитокинины. Ауксины активируют рост стеблей, листьев и корней, обеспечивая реакции типа тропизмов, а также стимулируют образование корней у черенков растений. Гиббереллины индуцируют или активируют рост стеблей растений, вызывают прорастание некоторых семян и образование партенокарпических плодов, а также нарушают период покоя у ряда растений. Цитокинины стимулируют клеточное деление (цитокинез), заложение и рост стеблевых почек как у целых растений, так и у недифференцированных каллюсов, а также продлевают жизнь и поддерживают нормальный обмен веществ у изолированных листьев, вызывают их вторичное позеленение. Из природных ингибиторов роста известны кумарин и его производные, абсцизовая кислота и др. Они тормозят рост растений при переходе их в состояние покоя.

К группам синтетических регуляторов относятся также ингибиторы: ретарданты — препараты, уменьшающие длину и увеличивающие толщину стеблей, и морфактины — соединения, вызывающие аномалии в точке роста и появление уродливых органов у растений. К ним примыкают вещества, специфически задерживающие передвижение ИУК и её производных по растению.

К веществам, обладающим резко ингибирующим действием, относятся гербициды, уничтожающие сорную растительность. Синтетические ингибиторы, в отличие от природных, способны более резко подавлять ростовые процессы; они длительный период не поддаются инактивации растительными тканями; характер их действия часто связан не только с ростом, но и с нарушением морфогенетических процессов.

Наиболее распространённый способ обработки растений регуляторами роста — опрыскивание.

Под воздействием ретардантов повышается устойчивость растений к засухе, холоду и загрязнению воздуха. У некоторых культурных растений (яблонь, азалий) они стимулируют зацветание и тормозят вегетативный рост.

Дормины возвращают активно растущие вегетативные почки в состояние покоя, что часто бывает необходимо при резких потеплениях в конце лета и осенью.

Гербициды, которые используются для борьбы с сорной растительностью, давно знакомы овощеводам и садоводам.

Десиканты применяются для предуборочного подсушивания растений.

В процессе выращивания огородных культур активно используются удобрения, инсектициды и фунгициды.

Проведенное нами исследование доказало эффективность регулятора роста гумат натрия «Сахалинский» в выращивании томата.

Используются в количестве, близком к естественному, так как при избытке могут быть получены результаты, обратные ожидаемым и часто негативные.

Применение регуляторов роста преследует многие цели, связанные с задачами защиты растений. Эти вещества малотоксичны для человека, животных, растений и полезной микрофлоры, эффективны, с низкими нормами расхода. Однако ни один из препаратов не является панацеей от всех напастей. Конечно, биорегуляторы повышают устойчивость растений к неблагоприятным внешним воздействиям, но надо помнить, что постоянное выращивание растений в экстремальных для них условиях рано или поздно приведет к их гибели. Так что химические препараты должны использоваться как вспомогательные средства, а не как альтернатива заботливому уходу.

Дезоксирибонуклеи́новая кислота́ (ДНК) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков. С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином

Рибонуклеи́новая кисло́та (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Нуклеоти́ды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов. НУКЛЕОЗИДЫ соединения, состоящие из остатков азотистого основания и углевода рибозы (рибонуклеозиды) или дезоксирибозы (дезоксирибонуклеозиды); N-гликозиды пуриновых или пиримидиновых оснований. В молекуле Н. углевод соединён через первый углеродный атом b-гликозидной связью с атомом азота (N-3) пиримидинового основания или атомом азота (N-9) пуринового основания Наибольшее значение в природе имеют Н., входящие в состав нуклеиновых к-т: аденозин, гуанозин, уридин, цитидин и тимидин. В составе транспортных РНК в небольших кол-вах обнаружены редкие Н.— 5-оксиметилцитидин, псевдоуридин, инозин и др. В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]