- •1.Предмет,задачи и методы физиологии растений.
- •6.Основные постулаты современной клеточной теории.
- •7.Структурные различия растительной и живой клеток.
- •11.Общая характеристика класса растительных белков. Белки растений, их состав, структура и функции.
- •12.Общая характеристика класса углеводов и их роль в жизнедеятельности растений.
- •14.Общая характеристика класса липидов и их химическая природа и функции в растении.
- •15.Общая характеристика класса нуклеиновых кислот. Их состав, структура и функции.
- •Каждый нуклеотид содержит три различных компонента: азотистое (пуриновое или пиримидиновое) основание, моносахарид пентозу (рибозу или дезоксирибозу) (Rb), остаток фосфорной кислоты (p).
- •Состав днк
- •16.Биосинтез белка и его регуляция.
- •22.Механизмы выделения и поглощения веществ растительной клеткой.
- •24.Движущая сила заряженных частиц и низкомолекулярных соединений(диффузия, облегченная диффузия, массовый поток, ионные насосы, переносчики, циклоз).
- •27.Общие представления о водном обмене растений.
- •34.Понятие о ближнем, среднем и дальнем транспорте воды в растении.
- •76. Общие представления о минеральном питании растений.
- •77. Роль минерального питания в обеспечении автотрофности растительного организма. Основные функции неорганических питательных элементов в растении.
- •78. Критерии необходимости элементов минерального питания для растений. Группы микро- и макроэлементов (принцип деления).
- •79. Корень как орган поглощения и усвоения питательных веществ.
- •80. Физиологическая роль и структурная организация ближнего, среднего и дальнего транспорта элементов минерального питания в растении.
- •81.Распределение по органам, накопление и реутилизация элементов минерального питания. Физиологические основы диагностики обеспеченности растений элементами минерального питания.
- •82. Биосинтетическая деятельность корня, ее взаимосвязь с органами надземных органов.
- •83. Физиологические основы выращивания растений без почвы, использование в практике защищенного грунта.
- •84. Физиологическая роль азота в обеспеченности питания растений аммонийными и нитратными формами.
- •85. Физиолого-биохимические особенности симбиотической азотфиксации.
- •86. Физиологическая роль фосфора и серы; их усвояемые формы, поглощение и распределение в растении. Внешние признаки недостатка этих элементов.
- •87. Физиологическая роль микроэлементов (Co, Zn, Mo и др). Их распределение в растении и внешние признаки недостатка.
- •88. Связь минерального питания с фотосинтезом и дыханием.
- •1.Особенности анатомо-морфологической структуры листа как органа фотосинтеза.
- •1. Эпидермис
- •2. Мезофилл, или хлоренхима
- •3. Проводящие ткани.
- •2)Химический состав, структура и функции хлоропластов.
- •I. Структура хлоропластов
- •II. Химический состав хлоропластов
- •4)Пигменты листа, их химическая природа и оптические свойства. Роль пигментов в процессе фотосинтеза. Пигменты листа, их химическая природа и оптические свойства
- •I. Зеленые пигменты – хлорофиллы
- •3. Оптические свойства хлорофиллов
- •II.Каротиноиды
- •5)Световая фаза фотосинтеза.
- •53.Общее представление о дыхание у растений и связанном с ним обмене веществ.
- •54.Общее и порциальное уравнения дыхания
- •55. Роль дыхания в жизни растения
- •56.Биологическое окисление. Основная дыхательная цепь( схема уравнения реакций )
- •57.Классификация ферментов дыхания
- •58.Дегидрогиназы растений, их химическая природа и функции
- •59.Оксидазы, их химическая природа и функции
- •59.Общая характеристика гликолиза
- •60.Окислительное фосфорилирование
- •62.Энергетика дыхания, вклад в нее анаэробной и аэробной фаз
- •63.Дополнительные дыхательные цепи .
- •64.Хемиосмотическая теория окислительного фосфорилирования
- •65.Использования энергии, высвобождающейся в процессе дыхания в растительном организме. Субстраты дыхания
- •66.Влияние внешних и внутренних факторов на интенсивность дыхания.
- •67.Дыхательные коэффициент, способ его определения и возможность использования для физиологической характеристики растительных объектов.
22.Механизмы выделения и поглощения веществ растительной клеткой.
Поглощение питательных веществ клеткой может быть пассивным и активным. Пассивное поглощение — это поглощение, не требующее затраты энергии. Оно связано с процессом диффузии и идет по градиенту концентрации данного вещества. С термодинамической точки зрения направление диффузии определяется химическим потенциалом вещества. Чем выше концентрация вещества, тем выше его химический потенциал. Передвижение идет в сторону меньшего химического потенциала. Необходимо отметить, что направление движения ионов определяется не только химическим, но также электрическим потенциалом. Следовательно, пассивное передвижение ионов может идти по градиенту химического и электрического потенциала. Таким образом, движущей силой пассивного транспорта ионов через мембраны является электрохимический потенциал.
Электрический потенциал на мембране — трансмембранный потенциал может возникать в силу разных причин:
1.Если поступление ионов идет по градиенту концентрации (градиенту-химического потенциала), однако благодаря разной проницаемости мембраны с большей скоростью поступает либо катион, либо анион. В силу этого на мембране возникает разность электрических потенциалов, что, в свою очередь, приводит к диффузии противоположно заряженного иона.
2. При наличии на внутренней стороне мембраны белков, фиксирующих определенные ионы, т. е. иммобилизирующих их. За счет фиксированных зарядов создается дополнительная возможность поступления ионов противоположного заряда (доннановское равновесие) .
3. В результате активного (связанного с затратой энергии) транспорта либо катиона, либо аниона. В этом случае противоположно заряженный ион может передвигаться пассивно по градиенту электрического потенциала. Явление, когда потенциал генерируется активным поступлением через мембрану ионов одного заряда, носит название электрогенного насоса. Термин «насос» показывает, что поступление идет с потреблением свободной энергии.
Активный транспорт — это транспорт, идущий против электрохимического потенциала с затратой энергии, выделяющейся в процессе метаболизма
Имеется ряд доказательств существования активного транспорта ионов. В частности, это опыты по влиянию внешних условий. Так, оказалось, что поступление ионов зависит от температуры. В определенных пределах с повышением температуры скорость поглощения веществ клеткой возрастает. В отсутствие кислорода, в атмосфере азота, поступление ионов резко тормозится и может даже наблюдаться выход солей из клеток корня наружу. Под влиянием дыхательных ядов, таких, как KCN, СО, поступление ионов также затормаживается. С другой стороны, увеличение содержания АТФ усиливает процесс поглощения. Все это указывает на то, что между поглощением солей и дыханием существует тесная связь.
Многие исследователи приходят к выводу о тесной взаимосвязи между поглощением солей и синтезом белка. Так, хлорамфеникол — специфический ингибитор синтеза белка — подавляет и поглощение солей. Активное поступление ионов осуществляется с помощью особых транспортных механизмов — насосов. Насосы подразделяются на две группы:
1.Электрогенные (упомянутые ранее), которые осуществляют активный транспорт иона какого-либо одного заряда только в одном направлении. Этот процесс ведет к накоплению заряда одного типа на одной стороне мембраны.
2. Электронейтральные, при которых перенос иона в одном направлении сопровождается перемещением иона такого же знака в противоположном либо перенос двух ионов с одинаковыми по величине, но разными по знаку зарядами в одинаковом направлении.
Способность клетки к избирательному накоплению питательных солей, зависимость поступления от интенсивности обмена служат доказательством того, что наряду с пассивным имеет место и активное поступление ионов. Оба процесса часто идут одновременно и бывают настолько тесно связаны, что разграничить их трудно.
.
23.Клеточная проницаемость. Гомеостаз, его значение для функционирования клетки. Физиологическая природа ответных реакций клетки на повреждающее воздействие. Проницаемость — способность тканей, клеток и субклеточных структур (ядра клетки и др.) пропускать газы, воду и различные вещества. Проникновение веществ через биологические мембраны происходит пассивно или путем активного переноса с участием специальных механизмов. Проницаемость мембран для различных агентов зависит как от физико-химических свойств последних, так и от особенностей самих мембран. Нарушения проницаемости могут возникать в результате действия разнообразных повреждающих факторов: высокой и низкой температуры, облучения, некоторых веществ (например, токсинов), недостатка кислорода, витаминов, гормонов и т. д. Нарушения проницаемости играют важную роль в патогенезе многих болезненных процессов: воспаления (см.), аллергии (см.), шока (см.), инфекционных заболеваний, нарушений выделительных процессов и др. Изменения проницаемости могут быть как проявлением защитной реакции, так и причиной многих тяжелых расстройств. Гомеоста́з (др.-греч. ὁμοιοστάσις от ὁμοιος — одинаковый, подобный и στάσις — стояние, неподвижность) — саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды.
Живая клетка представляет подвижную, саморегулирующую систему. Ее внутренняя организация поддерживается активными процессами, направленными на ограничение, предупреждение или устранение сдвигов, вызываемых различными воздействиями из окружающей и внутренней среды. Способность возвращаться к исходному состоянию после отклонения от некоторого среднего уровня, вызванного тем или иным «возмущающим» фактором, является основным свойством клетки. Многоклеточный организм представляет собой целостную организацию, клеточные элементы которой специализированы для выполнения различных функций. Взаимодействие внутри организма осуществляется сложными регулирующими, координирующими и коррелирующими механизмами с участием нервных, гуморальных, обменных и других факторов. Множество отдельных механизмов, регулирующих внутри- и межклеточные взаимоотношения, оказывает в ряде случаев взаимно противоположные воздействия, уравновешивающие друг друга. Это приводит к установлению в организме подвижного физиологического фона (физиологического баланса) и позволяет живой системе поддерживать относительное динамическое постоянство, несмотря на изменения в окружающей среде и сдвиги, возникающие в процессе жизнедеятельности организма.
Реакция клеток на повреждающие воздействия зависит от типа, продолжительности действия и тяжести повреждающего фактора. Например, малые дозы токсинов или непродолжительная ишемия могут вызвать обратимые изменения, тогда как большие дозы того же токсина и продолжительная ишемия способны привести к немедленной гибели клетки или медленному необратимому повреждению, вызывающему клеточную смерть. Тип, состояние и приспособляемость клетки также определяют последствия ее повреждения. Для ответа клетки на повреждение важны ее гормональный статус, характер питания и метаболические потребности.
