Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физ2.docx
Скачиваний:
11
Добавлен:
26.09.2019
Размер:
248.36 Кб
Скачать

16.Биосинтез белка и его регуляция.

Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК. Процесс биосинтеза белка требует значительных затрат энергии. Биосинтез белка происходит в два этапа. В первый этап входит транскрипция и процессинг РНК, второй этап включает трансляцию. Во время транскрипции фермент РНК-полимераза синтезирует молекулу РНК, комплементарную последовательности соответствующего гена (участка ДНК). Терминатор в последовательности нуклеотидов ДНК определяет, в какой момент транскрипция прекратится. В ходе ряда последовательных стадий процессинга из мРНК удаляются некоторые фрагменты, и редко происходит редактирование нуклеотидных последовательностей. После синтеза РНК на матрице ДНК происходит транспортировка молекул РНК в цитоплазму. В процессе трансляции информация, записанная в последовательности нуклеотидов переводится в последовательность остатков аминокислот. Между транскрипцией и трансляцией молекула мРНК претерпевает ряд последовательных изменений, которые обеспечивают созревание функционирующей матрицы для синтеза полипептидной цепочки. К 5΄-концу присоединяется кэп, а к 3΄-концу поли-А хвост, который увеличивает длительность жизни иРНК. С появлением процессинга в эукариотической клетке стало возможно комбинирование экзонов гена для получения большего разнообразия белков, кодируемым единой последовательностью нуклеотидов ДНК, — альтернативный сплайсинг. Трансляция заключается в синтезе полипептидной цепи в соответствии с информацией, закодированной в матричной РНК. Аминокислотная последовательность выстраивается при помощи транспортных РНК, которые образуют с аминокислотами комплексы — аминоацил-тРНК. Каждой аминокислоте соответствует своя тРНК, имеющая соответствующий антикодон, «подходящий» к кодону мРНК. Во время трансляции рибосома движется вдоль мРНК, по мере этого наращивается полипептидная цепь. Энергией биосинтез белка обеспечивается за счёт АТФ. Готовая белковая молекула затем отщепляется от рибосомы и транспортируется в нужное место клетки. Для достижения своего активного состояния некоторые белки требуют дополнительной посттрансляционной модификации.

17.Общие свойства и функции ферментов. Общие свойства ферментов одновременно являются и отличием ферментов от неорганических катализаторов: ферменты имеют белковую природу, поэтому обладают свойствами, характерными для белков; ферменты имеют сложное строение; ферменты обладают высокой специфичностью, как субстратной, так и специфичностью действия; ферменты имеют высокую биологическую активность, что обусловлено высоким сродством фермента к субстрату, и они гораздо сильнее снижают энергию активации. Единица измерения активности фермента - катал; ферменты действуют в мягких условиях ( при t° 37-45°, давлении 1 атм.); ферменты - это катализаторы с регулируемой активностью Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах — ими катализируется более 4000 разных биохимических реакций. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма. Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность — константа связывания некоторых субстратов с белком может достигать 10?10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду. Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37 °C. При этом эффективность ферментов значительно выше эффективности небелковых катализаторов — ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы — в сотни и тысячи раз.

18.Кинетика ферментативных реакций. Кинетика ферментативных реакций. Этот раздел энзимологии изучает влияние хими ческих и физических факторов на скорость ферментативной реакции. В 1913 г. Михаэлис и Ментен создали теорию ферментативной кинетики, исходя из того, что фермент (Е) вступает во взаимодействие с субстратом (S) с образованием промежуточного ферментсубстратного комплекса (ЕS), который далее распадается на фермент и продукт реакции по уравнению:

Каждый этап взаимодействия субстрата с ферментом характеризуется своими константами скорости. Отношение суммы констант скорости распада ферментсубстратного комплекса к константе скорости образования ферментсубстратного комплекса называется константой Михаелиса (Кm). Она определят сродство фермента к субстрату. Чем ниже константа Михаелиса, тем выше сродство фермента к субстрату, тем выше скорость ка тализируемой им реакции. По величине Кm каталитические реакции можно поделить на быстрые (Кm 106 моль/л и меньше) и медленные ( Кm 102 до 106).

Скорость ферментативной реакции зависит температуры, реакции среды, концентрации реагирующих веществ, количества фермента и других факторов.

1. Рассмотрим зависимость скорости реакции от количест ва фермента. При условии избытка субстрата скорость реакции пропорциональна количеству фермента, но при избыточном количестве фермента прирост скорости реакции будет сни жаться, поскольку уже не будет хватать субстрата.

2. Скорость химических реакций пропорциональна концентрации реагирующих ве ществ (закон действующих масс). Этот закон применим и для ферментативных реакций, но с определенными ограничениями. При постоянных количествах фермента скорость реакции действительно пропорциональна концентрации субстрата, но, только в области низких концен траций. При высоких концентрациях субстрата наступает насыщение фермента субстратом, то есть наступает такой момент, когда уже все мо лекулы фермента задействованы в каталитическом процессе и прироста скорости реакции не будет. Скорость реакции выходит на макси мальный уровень (Vmax) и дальше уже не зависит от концентрации субстрата. Зависимость скорости реакции от концентрации субстрата следует определять в той части кривой, кото рая ниже Vmax. Технически легче определить не максимальную скорость, а ½ Vmax. Этот параметр является главной характеристикой ферментативной реакции и дает возможность определить константу Михаелиса (Кm).

Кm (константа Михаэлиса) – это такая концентрация субстрата, при которой ско рость ферментативной реакции равна по ловине максимальной. Отсюда выводится уравнение Михаэлиса–Ментена скорости ферментативной реакции.

19.Механизмы регуляции активности ферментов. Отдельные белково-пептидные гормоны, а также адреналин и норадреналин не проникают внутрь клеток. Они регулируют обмен веществ, активность многих внутриклеточных ферментов опосредованно через вторичные передатчики, в качестве которых могут выступать циклические нуклеотиды (цАМФ, цГМФ), ионы кальция, диацилглицерол, инозитол, специфические белки и другие вещества. Гормоны связываются со специфическими рецепторами на поверхностной мембране клетки и активируют расположенный с внутренней стороны мембраны G-белок. Этот белок активирует или подавляет активность фермента аденилатциклазы. Аденилатциклаза катализирует синтез циклического АМФ из АТФ. Действие цАМФ («вторичный передатчик») внутри клетки реализуется через другой фермент – протеинкиназу, которая при отсутствии цАМФ не активна. Далее цАМФ-активируемая протеинкиназа катализирует перекос остатков фосфорной кислоты от АТФ на молекулы различных белков внутри клетки. Фосфорилированию могут подвергаться ферменты расщепления жиров, углеводов. В таком случае усиливается синтез АТФ в клетке, увеличивается количество ферментов белкового синтеза, изменяется функциональная активность клетки. Циклический АМФ расщепляется ферментом фосфодиэстеразой, в результате чего прекращается действие гормона. Механизм регуляции через вторичные посредники очень эффективен, так как значительно усиливает гормональный сигнал и обеспечивает быстрый биологический ответ клетки на повышение концентрации гормонов в крови. Аденилатциклазная система во многом определяет включение срочных механизмов перестройки внутриклеточного обмена при различных воздействиях, в том числе при физических нагрузках, и участвует в обеспечении срочной биохимической адаптации. С ростом тренированности организма совершенствуется аденилатциклазная система передачи гормональных сигналов в скелетных мышцах, что проявляется в повышении чувствительности у фермента аденилатциклазы к гормонам. Это позволяет осуществлять более тонкую регуляцию внутриклеточного обмена веществ при незначительных изменения уровня гормонов в крови. Действие гормонов на внутриклеточные процессы может осуществляться ионами кальция. При взаимодействии гормона с рецептором активизируются системы транспорта ионов кальция через мембрану. Кальций поступает в цитоплазму клеток из внешней среды или из внутриклеточных депо. Он связывается с кальций-зависимыми белками, одним из которых является кальмодулин. Комплекс кальций-кальмодулин повышает активность различных внутриклеточных ферментов, что ведет к изменению биохимических процессов и физиологических функций.

20.Принципы классификации ферментов. По первой в истории изучения ферментов классификации их делили на две группы: гидролазы, ускоряющие гидролитические реакции, и десмолазы, ускоряющие реакции негидролитического распада. Затем была сделана попытка разбить ферменты на классы по числу субстратов, участвующих в реакции. В соответствии с этим ферменты классифицировали на три группы. 1. Катализирующие превращения двух субстратов одновременно в обоих направлениях: А+В) С+D. 2. Ускоряющие превращения двух субстратов в прямой реакции и одного в обратной: А+В) С. 3. Обеспечивающие каталитическое видоизменение одного субстрата как в прямой, так и в обратной реакции: А) В. Одновременно развивалось направление, где в основу классификации ферментов был положен тип реакции, подвергающейся каталитическому воздейсвию. Наряду с ферментами, ускоряющими реакции гидролиза (гидролазы), были изучены ферменты, участвующие в реакциях переноса атомов и атомных групп (феразы), в изомеризации (изомеразы), расщеплении (лиазы), различных синтезах (синтетазы) и т. д. Это направление в классификации ферментов оказалось наибо-лее плодотворным, так как объединяло ферменты в группы не по надуманным, формальным признакам, а по типу важнейших биохимических процессов, лежащих в основе жизнедеятельности любого организма. По этому принципу все ферменты делят на 6 классов. 1. Оксидоредуктазы — ускоряют реакции окисления — восстановления. 2. Трансферазы — ускоряют реакции переноса функциональных групп и молекулярных остатков. 3. Гидролазы — ускоряют реакции гидролитического распада. 4. Лиазы — ускоряют негидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи). 5. Изомеразы — ускоряют пространственные или структурные перестройки в пределах одной молекулы. 6. Лигазы — ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей. Эти классы и положены в основу новой научной классификации ферментов. К классу оксидоредуктаз относят ферменты, катализирующие реакции окисления — восстановления. Окисление протекает как процесс отнятия атомов Н (электронов) от субстрата, а восстановление — как присоединение атомов Н (электронов) к акцептору. В класс трансфераз входят ферменты, ускоряющие реакции переноса функциональных групп и молекулярных остатков от одного соединения к другому. Это один из наиболее обширных классов: он насчитывает около 500 индивидуальных ферментов. В зависимости от характера переносимых группировок различают фосфотрансферазы, аминотрансферазы, гликозилтрансферазы, ацилтрансферазы, трансферазы, переносящие одноуглеродные остатки (метилтрансферазы, формил-трансферазы), и др. Например, амидазы ускоряют гидролиз амидов кислот. Из них важную роль в биохимических процессах в организме играют уреаза, аспарагиназа и глутаминаза. Уреаза была одним из первых белков-ферментов, полученным в кристаллическом состоянии. Это однокомпонентный фермент (М=480000), молекула его глобулярна и состоит из 8 равных субъединиц. Уреаза ускоряет гидролиз мочевины до NН3 и СO2. Характерные черты действия ферментов класса лигаз (синтетаз) выявлены совсем недавно в связи со значительными успехами в изучении механизма синтеза жиров, белков и углеводов: Оказалось, что старые представления об образовании этих соединений, согласно которым они возникают при обращении реакций гидролиза, не соответствуют действительности. Пути их синтеза принципиально иные. Главная их особенность — сопряженность синтеза с распадом веществ, способных поставлять энергию для осуществления биосинтетического процесса. Одним из таких природных соединений является АТФ. При отрыве от ее молекулы в присутствии лигаз одного или двух концевых остатков фосфорной кислоты выделяется большое количество энергии, используемой для активирования реагирующих веществ. Лигазы же каталитически ускоряют синтез органических соединений из активированных за счет распада АТФ исходных продуктов. Таким образом, к лигазам относятся ферменты, катализирующие соединение друг с другом двух молекул, сопряженное с гидролизом пирофосфатной связи в молекуле АТФ или иного нуклеозидтрифосфата. Механизм действия лигаз изучен еще недостаточно, но, несомненно, он весьма сложен. В ряде случаев доказано, что одно из участвующих в основной реакции веществ сначала дает промежуточное соединение с фрагментом распадающейся молекулы АТФ, а вслед за этим указанный промежуточный продукт взаимодействует со вторым партнером основной химической реакции с образованием конечного продукта.

21.Витамины и их роль в жизни растений. Витами́ны (от лат. vita -«жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи. Витамины содержатся в пище в очень малых количествах, и поэтому относятся к микронутриентам. Витамины не менее необходимы растениям, чем животным и человеку. При недостатке витаминов у растений нарушается обмен веществ, замедляется рост. Исследователи продолжают выяснять физиологическую роль витаминов. Уже установлено, что витамины принимают непосредственное участие, например, в фотосинтезе, питании и размножении.