- •1.Предмет,задачи и методы физиологии растений.
- •6.Основные постулаты современной клеточной теории.
- •7.Структурные различия растительной и живой клеток.
- •11.Общая характеристика класса растительных белков. Белки растений, их состав, структура и функции.
- •12.Общая характеристика класса углеводов и их роль в жизнедеятельности растений.
- •14.Общая характеристика класса липидов и их химическая природа и функции в растении.
- •15.Общая характеристика класса нуклеиновых кислот. Их состав, структура и функции.
- •Каждый нуклеотид содержит три различных компонента: азотистое (пуриновое или пиримидиновое) основание, моносахарид пентозу (рибозу или дезоксирибозу) (Rb), остаток фосфорной кислоты (p).
- •Состав днк
- •16.Биосинтез белка и его регуляция.
- •22.Механизмы выделения и поглощения веществ растительной клеткой.
- •24.Движущая сила заряженных частиц и низкомолекулярных соединений(диффузия, облегченная диффузия, массовый поток, ионные насосы, переносчики, циклоз).
- •27.Общие представления о водном обмене растений.
- •34.Понятие о ближнем, среднем и дальнем транспорте воды в растении.
- •76. Общие представления о минеральном питании растений.
- •77. Роль минерального питания в обеспечении автотрофности растительного организма. Основные функции неорганических питательных элементов в растении.
- •78. Критерии необходимости элементов минерального питания для растений. Группы микро- и макроэлементов (принцип деления).
- •79. Корень как орган поглощения и усвоения питательных веществ.
- •80. Физиологическая роль и структурная организация ближнего, среднего и дальнего транспорта элементов минерального питания в растении.
- •81.Распределение по органам, накопление и реутилизация элементов минерального питания. Физиологические основы диагностики обеспеченности растений элементами минерального питания.
- •82. Биосинтетическая деятельность корня, ее взаимосвязь с органами надземных органов.
- •83. Физиологические основы выращивания растений без почвы, использование в практике защищенного грунта.
- •84. Физиологическая роль азота в обеспеченности питания растений аммонийными и нитратными формами.
- •85. Физиолого-биохимические особенности симбиотической азотфиксации.
- •86. Физиологическая роль фосфора и серы; их усвояемые формы, поглощение и распределение в растении. Внешние признаки недостатка этих элементов.
- •87. Физиологическая роль микроэлементов (Co, Zn, Mo и др). Их распределение в растении и внешние признаки недостатка.
- •88. Связь минерального питания с фотосинтезом и дыханием.
- •1.Особенности анатомо-морфологической структуры листа как органа фотосинтеза.
- •1. Эпидермис
- •2. Мезофилл, или хлоренхима
- •3. Проводящие ткани.
- •2)Химический состав, структура и функции хлоропластов.
- •I. Структура хлоропластов
- •II. Химический состав хлоропластов
- •4)Пигменты листа, их химическая природа и оптические свойства. Роль пигментов в процессе фотосинтеза. Пигменты листа, их химическая природа и оптические свойства
- •I. Зеленые пигменты – хлорофиллы
- •3. Оптические свойства хлорофиллов
- •II.Каротиноиды
- •5)Световая фаза фотосинтеза.
- •53.Общее представление о дыхание у растений и связанном с ним обмене веществ.
- •54.Общее и порциальное уравнения дыхания
- •55. Роль дыхания в жизни растения
- •56.Биологическое окисление. Основная дыхательная цепь( схема уравнения реакций )
- •57.Классификация ферментов дыхания
- •58.Дегидрогиназы растений, их химическая природа и функции
- •59.Оксидазы, их химическая природа и функции
- •59.Общая характеристика гликолиза
- •60.Окислительное фосфорилирование
- •62.Энергетика дыхания, вклад в нее анаэробной и аэробной фаз
- •63.Дополнительные дыхательные цепи .
- •64.Хемиосмотическая теория окислительного фосфорилирования
- •65.Использования энергии, высвобождающейся в процессе дыхания в растительном организме. Субстраты дыхания
- •66.Влияние внешних и внутренних факторов на интенсивность дыхания.
- •67.Дыхательные коэффициент, способ его определения и возможность использования для физиологической характеристики растительных объектов.
58.Дегидрогиназы растений, их химическая природа и функции
К ферментам, катализирующим эти реакции, относятся дегидрогеназы из класса оксидоредуктаз. По своей химической природе все дегидрогеназы являются двухкомпонентными ферментами, т. е. состоят из белка и активной группы, или кофермента многие дегидрогеназы в активном центре содержит ионы металлов — цинк, марганец. и также другие.
Роль кофермента выполняют нуклеотиды: НАД+, НАДФ+, ФАД.
В качестве акцептора выступает обычно НАД/НАДФ или флавиновый кофермент, например ФАД или ФМН. ,
59.Оксидазы, их химическая природа и функции
Оксидазы это оксидоредуктазы, которые переносят атомы водорода или электроны непосредственно на атомы кислорода либо внедряют в молекулу субстрата атом кислорода:( гемпротеиды , цитохромы , цитохромонеидазы)ферменты класса оксидоредуктаз, катализирующие окислит.-восстановит. реакции, акцепторами водорода в к-рых служит кислород воздуха. При этом образуется вода или перекись водорода (Н2О2). Коферментом многих О. являются производные витамина В2— ФАД или ФМН. О. широко распространены в природе и играют важную роль в катаболизме (распаде) и детоксикации разл. соединений (напр., моноаминоксидаза разрушает биогенные амины).
59.Общая характеристика гликолиза
Гликолиз. Химизм локализация в клетке и биологическя роль .
Гликолиз осуществляется во всех живых клетках организмов. В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты: С6Н1206 -> 2С3Н402 + 2Н2. Этот окислительный процесс может протекать в анаэробных условиях (в отсутствие кислорода) и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилирования шестого углеродного атома за счет взаимодействия с АТФ:глюкоза + АТФ -> глюкозо-6-фосфат + АДФ.Реакция идет в присутствии ионов магния и фермента гексокиназа. Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализируется ферментом фосфоглюкоизомеразой:глюкозо-6-фосфат —> фруктозо-6-фосфат.Далее происходит еще одно фосфорилирование при участии АТФ. Фосфорная кислота присоединяется к первому углеродному атому молекулы фруктозы, процесс катализируется ферментом фосфофруктокиназой:фруктозо-6-фосфат + АТФ -> фруктозо-1,6-дифосфат + АДФ.Дальнейшие реакции, составляющие процесс гликолиза, складываются следующим образом: фруктозо-1,6-дифосфат расщепляется с образованием двух триоз, реакция катализируется ферментом альдолазой, которая состоит из четырех субъединиц и содержит свободные SH-группы. Реакция протекает по уравнению:
Молекула фосфодиоксиацетона при участии фермента триозофосфатизомеразы превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицериновой кислоты (ДФГК). Это важнейший этап гликолиза. Процесс идет с участием неорганического фосфата (Н3Р04) и фермента глицеральдегид-3-фосфатдегидро-геназы. Молекула этого фермента состоит из четырех идентичных субъединиц. Каждая субъединица представляет одиночную полипептидную цепь приблизительно из 220 аминокислотных остатков. Фермент содержит SH-группы и кофермент НАД, который взаимосвязан с ферментом на всем протяжении процесса. Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК. Окисление идет с выделением энергии. За счет энергии окисления при участии неорганического фосфата (Н3Р04) в молекуле ДФГК образуется макроэргическая фосфатная связь. Одновременно происходит восстановление кофермента НАД.
В целом реакция выглядит следующим образом:
На следующем этапе за счет имеющейся макроэргической связи в 1,3-дифосфоглицериновой кислоте образуется АТФ. Процесс катализируется ферментом фосфоглицераткиназой:
Таким образом, на этом этапе энергия окисления аккумулируется в форме энергии фосфатной связи АТФ. Затем 3-ФГК превращается в 2-ФГК, иначе говоря, фосфатная группа переносится из положения 3 в положение 2. Реакция 1 катализируется ферментом фосфоглицеромутазой и идет в присутствии магния:
Далее происходит дегидратация ФГК. Реакция идет при участии фермента енолазы в присутствии ионов Mg2+ или Мп2+. Дегидратация сопровождается перераспределением энергии внутри молекулы, в результате чего возникает макроэргическая связь. Образуется фосфоенолпировиноградная кислота (ФЕП):
Затем фермент пируваткиназа переносит богатую энергией фосфатную группу на АДФ с образованием АТФ и пировиноградной кислоты. Для протекания реакции необходимо присутствие ионов Mg2+ или Мn2+:
Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды. Таким образом, суммарное уравнение гликолиза. В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ. Образование АТФ в процессе следующее:
Реакция гликолиза носит название субстратного фосфорилирования, поскольку макроэргические связи возникают на молекуле окисляемого субстрата. Если считать, что при распаде АТФ из АДФ и Фн выделяется 30,6 кДж, то за период гликолиза накапливается в макроэргических фосфатных связях всего 61,2 кДж. Прямые определения показывают, что распад молекулы глюкозы до пировиноградной кислоты сопровождается выделением 586,6 кДж. Следовательно, энергетическая эффективность гликолиза невелика. Кроме того, образуются 2 молекулы НАДН, которые вступают в дыхательную цепь, что приводит к дополнительному образованию АТФ. Образовавшиеся две молекулы пировиноградной кислоты участвуют в аэробной фазе дыхания.
