- •1.Предмет,задачи и методы физиологии растений.
- •6.Основные постулаты современной клеточной теории.
- •7.Структурные различия растительной и живой клеток.
- •11.Общая характеристика класса растительных белков. Белки растений, их состав, структура и функции.
- •12.Общая характеристика класса углеводов и их роль в жизнедеятельности растений.
- •14.Общая характеристика класса липидов и их химическая природа и функции в растении.
- •15.Общая характеристика класса нуклеиновых кислот. Их состав, структура и функции.
- •Каждый нуклеотид содержит три различных компонента: азотистое (пуриновое или пиримидиновое) основание, моносахарид пентозу (рибозу или дезоксирибозу) (Rb), остаток фосфорной кислоты (p).
- •Состав днк
- •16.Биосинтез белка и его регуляция.
- •22.Механизмы выделения и поглощения веществ растительной клеткой.
- •24.Движущая сила заряженных частиц и низкомолекулярных соединений(диффузия, облегченная диффузия, массовый поток, ионные насосы, переносчики, циклоз).
- •27.Общие представления о водном обмене растений.
- •34.Понятие о ближнем, среднем и дальнем транспорте воды в растении.
- •76. Общие представления о минеральном питании растений.
- •77. Роль минерального питания в обеспечении автотрофности растительного организма. Основные функции неорганических питательных элементов в растении.
- •78. Критерии необходимости элементов минерального питания для растений. Группы микро- и макроэлементов (принцип деления).
- •79. Корень как орган поглощения и усвоения питательных веществ.
- •80. Физиологическая роль и структурная организация ближнего, среднего и дальнего транспорта элементов минерального питания в растении.
- •81.Распределение по органам, накопление и реутилизация элементов минерального питания. Физиологические основы диагностики обеспеченности растений элементами минерального питания.
- •82. Биосинтетическая деятельность корня, ее взаимосвязь с органами надземных органов.
- •83. Физиологические основы выращивания растений без почвы, использование в практике защищенного грунта.
- •84. Физиологическая роль азота в обеспеченности питания растений аммонийными и нитратными формами.
- •85. Физиолого-биохимические особенности симбиотической азотфиксации.
- •86. Физиологическая роль фосфора и серы; их усвояемые формы, поглощение и распределение в растении. Внешние признаки недостатка этих элементов.
- •87. Физиологическая роль микроэлементов (Co, Zn, Mo и др). Их распределение в растении и внешние признаки недостатка.
- •88. Связь минерального питания с фотосинтезом и дыханием.
- •1.Особенности анатомо-морфологической структуры листа как органа фотосинтеза.
- •1. Эпидермис
- •2. Мезофилл, или хлоренхима
- •3. Проводящие ткани.
- •2)Химический состав, структура и функции хлоропластов.
- •I. Структура хлоропластов
- •II. Химический состав хлоропластов
- •4)Пигменты листа, их химическая природа и оптические свойства. Роль пигментов в процессе фотосинтеза. Пигменты листа, их химическая природа и оптические свойства
- •I. Зеленые пигменты – хлорофиллы
- •3. Оптические свойства хлорофиллов
- •II.Каротиноиды
- •5)Световая фаза фотосинтеза.
- •53.Общее представление о дыхание у растений и связанном с ним обмене веществ.
- •54.Общее и порциальное уравнения дыхания
- •55. Роль дыхания в жизни растения
- •56.Биологическое окисление. Основная дыхательная цепь( схема уравнения реакций )
- •57.Классификация ферментов дыхания
- •58.Дегидрогиназы растений, их химическая природа и функции
- •59.Оксидазы, их химическая природа и функции
- •59.Общая характеристика гликолиза
- •60.Окислительное фосфорилирование
- •62.Энергетика дыхания, вклад в нее анаэробной и аэробной фаз
- •63.Дополнительные дыхательные цепи .
- •64.Хемиосмотическая теория окислительного фосфорилирования
- •65.Использования энергии, высвобождающейся в процессе дыхания в растительном организме. Субстраты дыхания
- •66.Влияние внешних и внутренних факторов на интенсивность дыхания.
- •67.Дыхательные коэффициент, способ его определения и возможность использования для физиологической характеристики растительных объектов.
53.Общее представление о дыхание у растений и связанном с ним обмене веществ.
Органический материал полностью пере. В бедные конечные неорганические продукты CO2 & H2O при этом выход энергии очень велик .
Дыхание-процесс поглащения О2 и выделения СО2 ,соправождаемый разложением сложных органических соединений и высвобождение большого колличества энергии
54.Общее и порциальное уравнения дыхания
Сумарное уравнение
С6Н12О6 +6Н2О6CO2 +6H2O+ 2824 кДж
Открыл Лавуазье
1 этап
С6Н12О6 +6Н2О6CO2 +12{H2}
2 этап
12{H2}+6O212H2O
55. Роль дыхания в жизни растения
Дыхание — один из центральных процессов обмена веществ растительного организма. Выделяющаяся при дыхании энергия тратится как на процессы роста, так и на поддержание в активном состоянии уже закончивших рост органов растения. Вместе с тем значение дыхания не ограничивается тем, что это процесс, поставляющий энергию. Дыхание, подобно фотосинтезу, сложный окислительно-восстановительный процесс, идущий через ряд этапов. На его промежуточных стадиях образуются органические соединения, которые затем используются в различных метаболических реакциях. К промежуточным соединениям относят органические кислоты и пентозы, образующиеся при разных путях дыхательного распада. Таким образом, процесс дыхания — источник многих метаболитов. Несмотря на то, что процесс дыхания в суммарном виде противоположен фотосинтезу, в некоторых случаях они могут дополнять друг друга. Оба процесса являются поставщиками как энергетических эквивалентов (АТФ, НАДФ.Н + ), так и метаболитов. Как видно из суммарного уравнения, в процессе дыхания образуется также вода. Эта вода в крайних условиях обезвоживания может быть использована растением и предохранить его от гибели. В некоторых случаях, когда энергия дыхания выделяется в виде тепла, дыхание ведет к бесполезной потере сухого вещества. В этой связи при рассмотрении процесса дыхания надо помнить, что не всегда усиление процесса дыхания является полезным для растительного организма.
56.Биологическое окисление. Основная дыхательная цепь( схема уравнения реакций )
Биологическое окисление - , совокупность ферментативных окислительно-восстановительных реакций, протекающих в живых клетках. В процессе биологического окисления происходит расщепление питательных веществ, и освобождаемая при этом энергия запасается в удобной для использования клетками форме т. н. богатых энергией соединений - аденозинтрифосфатов и др. Эти соединения затем расходуются на обеспечение всех процессов жизнедеятельности Значительная часть реакций биологического окисления осуществляется в митохондриях. ; . Реакции О. б. в клетках катализируют ферменты, объединяемые в класс оксидоредуктаз.
Анаэробное дыхание (гликолиз)
4АТФ(-2АТФ)+2НАДН(6АТФ)=8АТФ энергитический баланс гликолиза
Аэробное дыхание
Окислительное декарбоксилирование ПВК
Цикл кребса
Окислительное фосфорилирвание
57.Классификация ферментов дыхания
Окисление субстратов в ходе дыхания осуществляеться ферментами, окислением обного в-в соправождаеться востановлением другово , и осуществляющие эти реакции ферменты называться оксидоредуктазами
Дегидрогиназы (2H++2e-)HAД*Н+Н+, НАДФ*Н+Н+ФАД*Н2,ФМН*Н2
KoQ+H2(убихиноновые , медь протеиды,аскорбатоскидазы полифенолоксидазы)
Оксидазы е- ;2 е-; 4е-( гемпротеиды , цитохромы , цитохромонеидазы)
Оксигеназы;активация О2, соответственно внедряют 1\2 О2 и О2 (монооксигеназы ,диоксигеназы,
Дегидрогиназы НАД*Н+Н+, НАДФ*Н+Н+ -гемпротеиды ,ФАД*Н2 каталаза, ФМП*Н2 пероксидаза
