- •1.Предмет,задачи и методы физиологии растений.
- •6.Основные постулаты современной клеточной теории.
- •7.Структурные различия растительной и живой клеток.
- •11.Общая характеристика класса растительных белков. Белки растений, их состав, структура и функции.
- •12.Общая характеристика класса углеводов и их роль в жизнедеятельности растений.
- •14.Общая характеристика класса липидов и их химическая природа и функции в растении.
- •15.Общая характеристика класса нуклеиновых кислот. Их состав, структура и функции.
- •Каждый нуклеотид содержит три различных компонента: азотистое (пуриновое или пиримидиновое) основание, моносахарид пентозу (рибозу или дезоксирибозу) (Rb), остаток фосфорной кислоты (p).
- •Состав днк
- •16.Биосинтез белка и его регуляция.
- •22.Механизмы выделения и поглощения веществ растительной клеткой.
- •24.Движущая сила заряженных частиц и низкомолекулярных соединений(диффузия, облегченная диффузия, массовый поток, ионные насосы, переносчики, циклоз).
- •27.Общие представления о водном обмене растений.
- •34.Понятие о ближнем, среднем и дальнем транспорте воды в растении.
- •76. Общие представления о минеральном питании растений.
- •77. Роль минерального питания в обеспечении автотрофности растительного организма. Основные функции неорганических питательных элементов в растении.
- •78. Критерии необходимости элементов минерального питания для растений. Группы микро- и макроэлементов (принцип деления).
- •79. Корень как орган поглощения и усвоения питательных веществ.
- •80. Физиологическая роль и структурная организация ближнего, среднего и дальнего транспорта элементов минерального питания в растении.
- •81.Распределение по органам, накопление и реутилизация элементов минерального питания. Физиологические основы диагностики обеспеченности растений элементами минерального питания.
- •82. Биосинтетическая деятельность корня, ее взаимосвязь с органами надземных органов.
- •83. Физиологические основы выращивания растений без почвы, использование в практике защищенного грунта.
- •84. Физиологическая роль азота в обеспеченности питания растений аммонийными и нитратными формами.
- •85. Физиолого-биохимические особенности симбиотической азотфиксации.
- •86. Физиологическая роль фосфора и серы; их усвояемые формы, поглощение и распределение в растении. Внешние признаки недостатка этих элементов.
- •87. Физиологическая роль микроэлементов (Co, Zn, Mo и др). Их распределение в растении и внешние признаки недостатка.
- •88. Связь минерального питания с фотосинтезом и дыханием.
- •1.Особенности анатомо-морфологической структуры листа как органа фотосинтеза.
- •1. Эпидермис
- •2. Мезофилл, или хлоренхима
- •3. Проводящие ткани.
- •2)Химический состав, структура и функции хлоропластов.
- •I. Структура хлоропластов
- •II. Химический состав хлоропластов
- •4)Пигменты листа, их химическая природа и оптические свойства. Роль пигментов в процессе фотосинтеза. Пигменты листа, их химическая природа и оптические свойства
- •I. Зеленые пигменты – хлорофиллы
- •3. Оптические свойства хлорофиллов
- •II.Каротиноиды
- •5)Световая фаза фотосинтеза.
- •53.Общее представление о дыхание у растений и связанном с ним обмене веществ.
- •54.Общее и порциальное уравнения дыхания
- •55. Роль дыхания в жизни растения
- •56.Биологическое окисление. Основная дыхательная цепь( схема уравнения реакций )
- •57.Классификация ферментов дыхания
- •58.Дегидрогиназы растений, их химическая природа и функции
- •59.Оксидазы, их химическая природа и функции
- •59.Общая характеристика гликолиза
- •60.Окислительное фосфорилирование
- •62.Энергетика дыхания, вклад в нее анаэробной и аэробной фаз
- •63.Дополнительные дыхательные цепи .
- •64.Хемиосмотическая теория окислительного фосфорилирования
- •65.Использования энергии, высвобождающейся в процессе дыхания в растительном организме. Субстраты дыхания
- •66.Влияние внешних и внутренних факторов на интенсивность дыхания.
- •67.Дыхательные коэффициент, способ его определения и возможность использования для физиологической характеристики растительных объектов.
II. Химический состав хлоропластов
Химический состав хлоропластов достаточно сложен. В основном хлоропласты состоят из воды, белков, липидов, углеводов и минеральных веществ.
1. Вода
Содержание воды в хлоропласте велико – 75% массы, т.к. строма очень сильно обводнена. Вода выполняет в хлоропластах структурную роль – она механически поддерживает мембраны и служит растворителем для различных веществ в строме. Также вода наряду с СО2 служит сырьем для фотосинтеза.
2. Белки
В хлоропластах содержится много белков – 50-55% сухой массы. Белки хлоропластов делятся на 5 групп:
- структурные белки – поддерживают структуру мембран хлоропластов
- белки-ферменты – принимают участие в темновой фазе фотосинтеза, участвуют в синтезе хлоропластных белков и т.д.
- транспортные белки – осуществляют обмен веществами между стромой и цитоплазмой
- сократительные белки – осуществляют передвижение хлоропластов в сторону более благоприятных для фотосинтеза условий
- рецепторные белки – воспринимают условия внутренней и внешней среды и регулируют в соответствии с этими условиями функционирование хлоропласта
3. Липиды
Т.к. хлоропласты имеют развитую систему мембран, то в них содержится много липидов – 30-40% сухой массы. В хлоропластах содержится 3 группы липидов:
- структурные – входят в состав мембран; мембраны хлоропластов содержат сравнительно меньше фосфолипидов и сфинголипидов и больше гликолипидов, чем цитоплазматическая мембрана
- фотосинтетические пигменты – в мембранах хлоропластов растворены зеленые пигменты – хлорофиллы и желтые – каротиноиды
- жирорастворимые витамины – в мембранах растворены витамины D, Е и К, которые участвуют в процессе фотосинтеза
4. Углеводы
Очень небольшое количество углеводов в хлоропластах представляет собой промежуточные продукты темновых реакций фотосинтеза, а все остальные углеводы в хлоропластах – это продукты фотосинтеза, в первую очередь крахмал. Поэтому содержание углеводов в хлоропластах очень непостоянно: при слабом фотосинтезе их содержится всего 5% сухой массы, а при активном – до 50%. Поскольку крахмал нерастворим в воде, то он откладывается в хлоропластах в виде зерен; если этих зерен накапливается очень много, то они сдавливают внутренние мембраны хлоропластов и приводят к нарушению фотосинтеза. Поэтому крахмал в хлоропластах постоянно гидролизуется обратно до глюкозы, к оторая транспортируется из клеток листа.
5. Минеральные вещества
В хлоропластах по сравнению с цитоплазмой содержится очень много минеральных веществ – до 25% сухой массы. Минеральные элементы выполняют в хлоропластах различные функции:
- железо и медь входят в состав многих коферментов
- магний входит в состав хлорофилла
- кальций стабилизирует мембранные структуры хлоропластов и т.д.
4)Пигменты листа, их химическая природа и оптические свойства. Роль пигментов в процессе фотосинтеза. Пигменты листа, их химическая природа и оптические свойства
Процесс фотосинтеза основан на том, что растение поглощает световую энергию и преобразует ее в химическую. Для того, чтобы поглощать световую энергию, в растении имеются специальные окрашенные вещества – фотосинтетические пигменты. Все фотосинтетические пигменты – это жиропод 656e41jg обные вещества, несущие в составе своих молекул неполярные гидрофобные части; поэтому фотосинтетические пигменты располагаются во внутренних мембранах хлоропластов. Высшие растения содержат фотосинтетические пигменты 2 основных групп: зеленые – хлорофиллы и желтые – каротиноиды.
