
- •1.Тонкие линзы.
- •2.Оптические системы.
- •3.Фотометрия.
- •7.Волновое число. Волновой вектор.
- •15. Понятие о гологpафии.
- •24. Закон Брюстера.
- •26.Закон Малюса.
- •27. Двойное лучепреломление.
- •37. Фотоны.
- •41. Опытное обоснование корпускулярно-волнового дуализма свойств вещества.
- •46. Уpавнение Шpедингеpа для стационаpных состояний.
- •54.Формула Бальмера.
- •55. Главное квантовое число.
- •56. Орбитальное квантовое число.
- •57. Магнитные квантовое числа.
- •64. Уpовень Феpми.
- •67. Сверхпроводимость.
- •68. Валентная зона и зона проводимости.
- •69. Заполнение зон в металлах, диэлектpиках и полупpоводниках.
- •70. Собственная проводимость.
- •73. Квазичастицы электроны проводимости и дырки.
- •76. Люминесценция.
- •81. Дефект массы и энергия связи ядра.
- •82. Строение атомных ядеp.
- •86. Понятие об ядерной энергетике.
- •90. Взаимная превращаемость элементарных частиц.
- •91. Сильные, электромагнитные, слабые и гравитационные взаимодействия.
- •92. Понятие об основных проблемах современной физики.
- •4.Волновые процессы.
- •5.Уравнение плоской синусоидальной волны.
- •6.Фазовая скоpость, длина волны.
- •8.Отражение плоской волны от границы двух диэлектриков.
- •9.Преломление плоской волны на границе двух диэлектриков..
- •10.Когерентность и монохроматичность световых волн.
- •11.Способы получения когеpентных источников в оптике.
- •14.Кольца Ньютона.
- •16. Принцип Гюйгенса – Френеля.
- •17 .Метод зон Френеля.
- •18.Метод векторных диаграмм.
- •19.Дифpакция Фpенеля на круглом отверстии и диске.
- •20.Дифpакция Фpаунгофеpа на одной щели.
- •21.Дифpакция Фpаунгофеpа на дифракционной решетке.
- •22.Поляpизация.
- •23.Поляризация света при отражении.
- •25.Естественный и поляризованный свет. Естественный и поляризованный свет.
- •28. Тепловое излучение.
- •29. Закон Кирхгофа.
- •30.Закон Стефана-Больцмана.
- •31.Закон смещения Вина.
- •33. Квантовая гипотеза и формула Планка.
- •34. Внешний фотоэффект.
- •35.Законы Столетова для фотоэффекта.
- •36.Уравнение Эйнштейна для фотоэффекта.
- •38.Масса фотона.
- •40.Гипотеза де Бройля.
- •39.Энергия и импульс фотона.
- •42 Соотношение неопpеделенностей.
- •45.Стационаpные состояния.
- •49 Квантование энергии и импульса частицы.
- •51.Постулаты Боpа.
- •52.Атом водорода.
- •53.Спектpы водоpодоподобных атомов.
- •58.Опыт Штерна и Герлаха.
- •59.Спин электрона.
- •60.Пpинцип Паули.
- •62.Число электpонных состояний в проводнике.
- •71.Пpимесная проводимость полупроводников.
- •78.Пpинцип работы квантового генеpатоpа.
- •79.Заряд, размер и масса атомного ядра.
- •83.Ядеpные реакции и законы сохранения.
- •84.Радиоактивные пpевpащения атомных ядер.
- •88.Элементарные частицы.
- •89.Классификция элементарных частиц.
- •72.Эффективная масса электрона в кристалле.
- •75.Эффективная масса электрона в кристалле.
- •80.Массовое и зарядовое число.
- •85.Цепная реакция ядерного деления.
- •43.Задание состояния микpочастицы.
- •44.Волновая функция и ее статистический смысл.
- •48.Частица в одномеpной бесконечно глубокой пpямоугольной потенциальной яме.
- •61. Распределение электронов в атоме по состояниям.
- •63. Распределение электронов проводимости в металле по энергиям при абсолютном нуле температуры.
- •65. Влияние температуры на распределение электронов.
- •Тонкие линзы.
68. Валентная зона и зона проводимости.
Валентная зона — энергетическая область разрешённых электронных состояний в твёрдом теле, заполненная валентными электронами.
В полупроводниках при T=0 (T — абсолютная температура) валентная зона заполнена электронами целиком, и электроны не дают вклада в электропроводность и другие кинетические эффекты, вызываемые внешними полями. При T>0 К происходит тепловая генерация носителей заряда, в результате которой часть электронов переходит в расположенную выше зону проводимости или на примесные уровни в запрещённой зоне. При этом в валентной зоне образуются дырки, участвующие наряду с электронами в зоне проводимости в переносе электрического тока. Дырки в валентной зоне могут также возникать при нетепловом возбуждении полупроводника — освещении, облучении потоком ионизирующих частиц, воздействии сильного электрического поля, который в Зона проводимости — в зонной теории твёрдого тела первая из незаполненных электронами зон (диапазонов энергии, где могут находиться электроны) в полупроводниках и диэлектриках. Электроны из валентной зоны, преодолев запрещённую зону, при ненулевой температуре попадают в зону проводимости и начинают участвовать в проводимости, то есть перемещаться под действием электрического поля. В полуметаллах валентная зона перекрывается с зоной проводимости (запрещённая зона имеет формальную отрицательную ширину), поэтому в них даже при абсолютном нуле присутствуют электроны в зоне проводимости. При уменьшении размеров системы нижняя граница зоны проводимости, как правило, смещается вверх по энергии относительно уровня Ферми. Аналогом нижней границы зоны проводимости в молекулярных системах (кластерах) является нижняя свободная молекулярная орбиталь.
69. Заполнение зон в металлах, диэлектpиках и полупpоводниках.
Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.В соответствии с квантовой механикой свободные электроны могут иметь любую энергию — их энергетический спектр непрерывен. Электроны, принадлежащие изолированным атомам, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий.
В различных веществах, а также в различных формах одного и того же вещества, энергетические зоны располагаются по-разному. По взаимному расположению этих зон вещества делят на три большие группы:
А) проводники — зона проводимости и валентная зона перекрываются, образуя одну зону, называемую зоной проводимости, таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твердому телу разности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.
Б) диэлектрики — зоны не перекрываются и расстояние между ними составляет более 3.5 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.
В) полупроводники — зоны не перекрываются и расстояние между ними составляет менее 3.5 эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые полупроводники слабо пропускают ток.
Зонная теория является основой современной теории твёрдых тел. Она позволила понять природу и объяснить важнейшие свойства металлов, полупроводников и диэлектриков. Величина запрещённой зоны между зонами валентности и проводимости является ключевой величиной в зонной теории, она определяет оптические и электрические свойства материала.
Поскольку одним из основных механизмов передачи электрону энергии является тепловой, то проводимость полупроводников очень сильно зависит от температуры. Также, проводимость можно увеличить, создав разрешенный энергетический уровень в запрещенной зоне, путем легирования. Таким образом создаются все полупроводниковые приборы: солнечные элементы (преобразователи света в электричество), диоды, транзисторы, твердотельные лазеры и другие.
Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного — электрона, и положительного — дырки), обратный переход — процессом рекомбинации.