
- •1.Тонкие линзы.
- •2.Оптические системы.
- •3.Фотометрия.
- •7.Волновое число. Волновой вектор.
- •15. Понятие о гологpафии.
- •24. Закон Брюстера.
- •26.Закон Малюса.
- •27. Двойное лучепреломление.
- •37. Фотоны.
- •41. Опытное обоснование корпускулярно-волнового дуализма свойств вещества.
- •46. Уpавнение Шpедингеpа для стационаpных состояний.
- •54.Формула Бальмера.
- •55. Главное квантовое число.
- •56. Орбитальное квантовое число.
- •57. Магнитные квантовое числа.
- •64. Уpовень Феpми.
- •67. Сверхпроводимость.
- •68. Валентная зона и зона проводимости.
- •69. Заполнение зон в металлах, диэлектpиках и полупpоводниках.
- •70. Собственная проводимость.
- •73. Квазичастицы электроны проводимости и дырки.
- •76. Люминесценция.
- •81. Дефект массы и энергия связи ядра.
- •82. Строение атомных ядеp.
- •86. Понятие об ядерной энергетике.
- •90. Взаимная превращаемость элементарных частиц.
- •91. Сильные, электромагнитные, слабые и гравитационные взаимодействия.
- •92. Понятие об основных проблемах современной физики.
- •4.Волновые процессы.
- •5.Уравнение плоской синусоидальной волны.
- •6.Фазовая скоpость, длина волны.
- •8.Отражение плоской волны от границы двух диэлектриков.
- •9.Преломление плоской волны на границе двух диэлектриков..
- •10.Когерентность и монохроматичность световых волн.
- •11.Способы получения когеpентных источников в оптике.
- •14.Кольца Ньютона.
- •16. Принцип Гюйгенса – Френеля.
- •17 .Метод зон Френеля.
- •18.Метод векторных диаграмм.
- •19.Дифpакция Фpенеля на круглом отверстии и диске.
- •20.Дифpакция Фpаунгофеpа на одной щели.
- •21.Дифpакция Фpаунгофеpа на дифракционной решетке.
- •22.Поляpизация.
- •23.Поляризация света при отражении.
- •25.Естественный и поляризованный свет. Естественный и поляризованный свет.
- •28. Тепловое излучение.
- •29. Закон Кирхгофа.
- •30.Закон Стефана-Больцмана.
- •31.Закон смещения Вина.
- •33. Квантовая гипотеза и формула Планка.
- •34. Внешний фотоэффект.
- •35.Законы Столетова для фотоэффекта.
- •36.Уравнение Эйнштейна для фотоэффекта.
- •38.Масса фотона.
- •40.Гипотеза де Бройля.
- •39.Энергия и импульс фотона.
- •42 Соотношение неопpеделенностей.
- •45.Стационаpные состояния.
- •49 Квантование энергии и импульса частицы.
- •51.Постулаты Боpа.
- •52.Атом водорода.
- •53.Спектpы водоpодоподобных атомов.
- •58.Опыт Штерна и Герлаха.
- •59.Спин электрона.
- •60.Пpинцип Паули.
- •62.Число электpонных состояний в проводнике.
- •71.Пpимесная проводимость полупроводников.
- •78.Пpинцип работы квантового генеpатоpа.
- •79.Заряд, размер и масса атомного ядра.
- •83.Ядеpные реакции и законы сохранения.
- •84.Радиоактивные пpевpащения атомных ядер.
- •88.Элементарные частицы.
- •89.Классификция элементарных частиц.
- •72.Эффективная масса электрона в кристалле.
- •75.Эффективная масса электрона в кристалле.
- •80.Массовое и зарядовое число.
- •85.Цепная реакция ядерного деления.
- •43.Задание состояния микpочастицы.
- •44.Волновая функция и ее статистический смысл.
- •48.Частица в одномеpной бесконечно глубокой пpямоугольной потенциальной яме.
- •61. Распределение электронов в атоме по состояниям.
- •63. Распределение электронов проводимости в металле по энергиям при абсолютном нуле температуры.
- •65. Влияние температуры на распределение электронов.
- •Тонкие линзы.
80.Массовое и зарядовое число.
Зарядовое число атомного ядра— количество протонов в атомном ядре. Зарядовое число равно заряду ядра в единицах элементарного заряда и одновременно равно порядковому номеру соответствующего ядру химического элемента в таблице Менделеева.
Термин «атомный» или «порядковый» номер обычно используется в атомной физике и в химии, тогда как эквивалентный термин «зарядовое число» — в ядерной физике. В неионизированном атоме количество электронов в электронных оболочках совпадает с зарядовым числом.
Зарядовое число обычно обозначается буквой Z. Ядра с одинаковым зарядовым числом, но различным массовым числом A являются различными изотопами одного и того же химического элемента, поскольку именно заряд ядра определяет структуру электронной оболочки атома и, следовательно, его химические свойства.
Ма́ссовое число́ атомного ядра — суммарное количество протонов и нейтронов (называемых общим термином «нуклоны») в ядре. Обычно обозначается буквой A. Массовое число близко к атомной массе изотопа, выраженной в атомных единицах массы, но совпадает с ней только для углерода-12, поскольку атомная единица массы (а. е. м.) определяется сейчас как 1/12 массы атома 12С. Во всех остальных случаях атомная масса не является целым числом, в отличие от массового числа. Массовое число в обозначении конкретного изотопа пишется верхним левым индексом, например 232Th. Изотопы с одинаковым массовым числом называются изобарами.
Знание массового числа позволяет оценить массу ядра и атома.
85.Цепная реакция ядерного деления.
Цепная ядерная реакция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении.
Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы или радикалы. Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны, не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой. Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.
Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся.