
- •1. Предмет математической статистики.
- •2. Статистические совокупности, их виды.
- •3. Определяющее свойство статистической совокупности.
- •4. Признаки единиц совокупности, их классификация.
- •5. Описательная характеристика статистических совокупностей.
- •6. Ранжированный ряд распределения, техника его построения.
- •7. Анализ ранжированного ряда распределения.
- •8. Вариационный ряд распределения, техника построения для дискретного признака.
- •9. Интервальный вариационный ряд распределения, техника его построения.
- •10. Анализ дискретного и интервального вариационного ряда распределения.
- •11. Определение статистического показателя применительно к абстрактной статистической совокупности.
- •12. Система статистических показателей для всесторонней характеристики статистического ряда распределения.
- •13. Показатели центральной тенденции, их классификация.
- •14. Параметрические показатели центральной тенденции, их виды, условия применения и алгоритмы расчета.
- •15. Условия типичности параметрических средних.
- •16. Непараметрические средние. Алгоритмы их расчета в ранжированном ряду распределения.
- •17. Алгоритмы расчета структурных средних в дискретном и вариационном рядах распределения.
- •18. Взаимосвязь средней арифметической, моды и медианы.
- •19. Сравнение средней арифметической, моды и медианы.
- •20. Понятие о вариации.
- •Показатели вариации, алгоритмы их расчета
- •Интерпретация показателей вариации
- •Сравнение вариации одного и того же признака в двух совокупностях, сравнение вариации разных по содержанию признаков
- •Конкретная ошибка выборки, распределение конкретных ошибок выборки
- •Средняя ошибка выборки для выборочной средней и выборочной доли
- •61.Область согласия и область отказа. Соотношение между ними
- •62. Статистические таблицы , как инструмент принятия ( отказа ) гипотез
- •68. Особенности проверки гипотезы о соответствии фактического распределения нормальному.: постановка гипотезы; содержание ожидаемых частот; расчет критерия
- •69 Особенности проверки гипотезы о соответствии фактического распределения распределению Пуассона: постановка гипотезы; содержание ожидаемых частот; расчет критерия
- •71. Как критерий независимости. Постановка нулевой и альтернативной гипотез.
- •72. Как критерий независимости. Содержание и алгоритм расчета ожидаемых частот
- •73. Как критерий однородности. Содержание выдвигаемых гипотез
- •74. Как критерий однородности.Какие сравнения определяют величину фактического значения критерия.
- •75. Определение табличного значения критерия при различных аспектах его использования.
- •76. Схема проверки гипотез относительно генеральной средней
- •77. Критерий двухсторонний и односторонний
- •78. Особенности принятия альтернативной гипотезы при направленном ее характере
- •79. Выборки зависимые и независимые
- •80. Особенности проверки гипотез относительно двух средних при равных численностях выборок и равных дисперсиях
- •91. Проверка гипотезы относительно доли признака в двух совокупностях, если хотя бы одна из выборочных долей лежит вне интервала 0,1-0,9
- •92. Проверка гипотезы о принадлежности конкретного наблюдения исследуемой совокупности с использованием критерия t – нормального распределения
- •93. Проверка гипотезы о принадлежности конкретного наблюдения исследуемой совокупности с использованием критерия Диксона
- •94. Постановка гипотез при дисперсионном анализе
- •95 Критерий f- Фишера. Условия его применимости
- •96.Преобразование исходных данных с целью проведения дисперсионного анализа
- •97.Необходимость конкретизации результатов дисперсионного анализа
- •98. Конкретизация результатов дисперсионного анализа на основе критерия q- Тьюки
- •99 Понятие о контрастах
- •100. Схема конкретизации результатов дисперсионного анализа методом контрастов Шефе
- •101. Модель дисперсионного анализа с постоянным эффектом факторов, постановка гипотез и расчет фактического значение критерия.
- •102. Модель дисперсионного анализа со случайным эффектом факторов, постановка гипотез и расчет фактического значение критерия.
- •103. Проверяемые гипотезы при двухфакторном дисперсионном анализе.
- •104. Разложение общего объема вариации признака при двухфакторном дисперсионном анализе и неслучайном формировании повторностей.
- •105. Понятие о многомерном дисперсионном анализе.
- •106. Понятие о корреляционной связи.
- •107. Требования к совокупности и факторным признакам при построении корреляционного уравнения связи.
- •108. Этапы построения уравнения связи.
- •108. Методы нахождения вида уравнения.
- •109. Метод наименьших квадратов, содержание и реализация.
- •110. Интерпретация коэффициентов уравнения.
- •122. Приведение матрицы исходных данных в сопоставимый вид при построении многомерной средней.
- •122. Нормирование исходных данных.
- •125. Выбор итерации, соответствующей оптимальному разбиению.
- •126. Метод k-средних (кластерный анализ с обучением).
- •127. Методы установления центров тяжести.
- •128. Назначение факторного анализа.
- •129. Техника факторного анализа.
- •130. Разложение единичной дисперсии.
- •131. Общность, специфичность, надежность в факторном анализе.
- •132. Общий алгоритм факторного анализа.
- •133. Решение проблемы общности при факторном анализе.
- •134. Установление числа факторов.
- •135. Простая структура Терстоуна.
- •136. Факторные нагрузки.
- •137. Вращение матрицы факторных нагрузок и интерпретация факторов.
- •138. Методы вращения матрицы факторных нагрузок.
- •139. Расчет значений факторов по отдельным наблюдениям.
- •140. Применение результатов факторного анализа при построении регрессионных уравнений.
- •141. Назначение дискриминантного анализа.
- •142. Переменные группировочные и независимые
- •143.Пошаговое включение переменных (переменные в модели и вне модели)
- •144. Канонический анализ, его составляющие
- •150.Матрица классификации
74. Как критерий однородности.Какие сравнения определяют величину фактического значения критерия.
Особенность расчета фактического критерия в том, что оно находится на основе частот двух выборок:
=
Где
–численность
каждой jтой из kгрупп
в первой совокупности,
–общая
численность первой выборочной
совокупности,
– общая численность второй выборочной
совокупности,
-
доля каждой jтой группы
в первой выборке,
-
доля каждой jтой группы
во второй выборочной совокупности,
-
общая численность группы jво
второй выб совокупности.
75. Определение табличного значения критерия при различных аспектах его использования.
Табличное значение критерия при данном аспекте его использования определяется уровнем значимости ( α.) и числом степеней свободы, которое равно df((v)=k-1, где k– число групп, на которые подразделена каждая из совокупностей.
76. Схема проверки гипотез относительно генеральной средней
1). Выдвигаются гипотезы
2). Выбор уровня значимости
3). Расчет факт значения критерия – либо критерия t-нормального распределения, либо t-Стьюдента
Алгоритм расчета факт критерия видоизменяется в зависимости от 4-х ситуаций:
выборки равны и дисперсии равны
выборки не равны, дисперсии равны
выборки равны, дисперсии не равны
нет равенства ни там, ни там
4). Проверка вспомогательной гипотезы на основе F- критерия
5). Сопоставление факт критерия с табл
6). Принятие или опровержения гипотез
77. Критерий двухсторонний и односторонний
Односторонний критерий используется в том случае, когда у исследователя есть предположении о направлении различий, то есть о том, какая из групп будет иметь большую выраженность соответствующего параметра, а какая - меньшую.
Если же исследователь предполагает, что группы различаются, но не уверен какая группа будет иметь более высокое значение, а какая - более низкое, используется двусторонний критерий.
78. Особенности принятия альтернативной гипотезы при направленном ее характере
Направленная гипотеза указывает направление эффекта: в группе 1 среднее выше, чем в группе 2, или корреляция между двумя переменными больше нуля.
79. Выборки зависимые и независимые
При независимых выборках в качестве нулевой гипотезы Выдвигается предположение, что средние по 2-м генеральным совокупностям, из которых сделаны выборки, равны между собой:
- - - -
.
В качестве альтернативной гипотезы мб
выдвинута гипотеза Ha=
или
направленная
При зависимых выборках в качестве нулевой гипотезы выдвигается предположение, что средняя разность попарно взаимосвязанных наблюдений в генеральной совокупности равно 0, то есть D=0, в кач-ве альтернативной ненаправленной D≠0, альтернативной направленной D→,←0
80. Особенности проверки гипотез относительно двух средних при равных численностях выборок и равных дисперсиях
При равных численностях выборок и равных дисперсиях фактическое значение критерия рассчитывается по следующему алгоритму:
tфакт=
,
, гдеx1 –среднее
значение признака по первой выборке,
x2 –среднее значение
признака по второй выборке. При том
разность между средними берется по
абсолютной величине.
Т к дисперсии по генеральным совокупностям равны, находится усредненная по 2-м выборкам дисперсия:
-
=
,
x1i –
значение признака по первой выборке,
x2i–значение
признака по второй выборке,
n1=n2=n–численность
равных по величине выборок.
81-90 отсутствуют