
- •Закон Паскаля для жидкостей и газов
- •Вывод закона Архимеда для тела произвольной формы
- •Условие плавания тел
- •Практические следствия
- •[Править]Вывод
- •[Править]Определение
- •Вязкое (жидкое) трение
- •Давным-давно ...
- •Что же такое "смазка"?
- •Переход к турбулентности
- •Математическое определение
- •[Править]Правило Жуковского
- •[Править]Получение
- •[Править]Физический смысл
- •[Править]Сила Кориолиса в природе
- •Эксперимент Фуко
- •Физика эксперимента
- •[Править]Действующие маятники Фуко (в России и снг)
- •[Править]Интересные факты
- •Преобразования Лоренца в физике
- •[Править]Вид преобразований при коллинеарных (параллельных) пространственных осях
- •[Править]Вывод преобразований
- •[Править]Разные формы записи преобразований [править]Вид преобразований при произвольной ориентации осей
- •[Править]Преобразования Лоренца в матричном виде
- •[Править]Свойства преобразований Лоренца
- •[Править]Следствия преобразований Лоренца Изменение длины
- •[Править]Относительность одновременности
- •[Править]Замедление времени для движущихся тел [править]Связанные определения
- •[Править]История
- •Второй закон Ньютона в релятивистской механике
- •Понятие релятивистской массы
- •Классификация
- •[Править]По физической природе
- •[Править]По характеру взаимодействия с окружающей средой
- •Характеристики
- •[Править]Закон Гука
- •[Править]Нелинейные деформации
- •Вынужденные колебания гармонического осциллятора Консервативный гармонический осциллятор
- •Механика
- •[Править]Струна
- •Акустика
- •Примеры
- •В природе и технике
- •Классификации волн
- •[Править]Влияние субстанции
- •Источники ультразвука
- •Ультразвук в природе
- •Источники инфразвука
- •Свойства Ньютоновского тяготения
- •Принцип эквивалентности
- •Недостатки ньютоновской модели тяготения
- •Гравитационное поле в общей теории относительности
Источники ультразвука
Частота сверхвысокочастотных ультразвуковых волн, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Фокусировка таких пучков обычно осуществляется с помощью специальных звуковых линз и зеркал. Ультразвуковой пучок с необходимыми параметрами можно получить с помощью соответствующего преобразователя. Наиболее распространены керамические преобразователи из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвукового пучка, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).
В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.
Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока — струи газа или жидкости. Вторая группа излучателей — электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.
Ультразвук в природе
Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом (кожановые — Vespertilionidae) или имеющим форму параболического зеркала носовым отверстием (подковоносые — Rhinolophidae) сигналы чрезвычайно высокой интенсивности. На расстоянии 1 — 5 см от головы животного давление ультразвука достигает 60 мбар, то есть соответствует в слышимой нами частотной области давлению звука, создаваемого отбойным молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, то есть в 10000 раз меньше, чем у испускаемых сигналов.
Инфразву́к (от лат. infra — ниже, под) — упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0.001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.
Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.
Источники инфразвука
Естественные источники
Возникает при землетрясениях, во время бурь и ураганов, цунами. При помощи достаточно сильных инфразвуков (более 60 дБ) общаются между собой киты.
Техногенные источники
К основным техногенным источникам инфразвука относится мощное оборудование — станки, котельные, транспорт, подводные и подземные взрывы. Кроме того, инфразвук излучают ветряные электростанции и, в некоторых случаях,вентиляционные шахты.
32. Закон тяготения Ньютона. Измерение постоянной тяготения.
В
рамках классической
механики гравитационное
взаимодействие описывается законом
всемирного тяготения.
Этот закон был открыт Ньютоном в
1666 г.. Он гласит, что сила гравитационного
притяжения между двумя материальными
точками массы
и
,
разделёнными расстоянием
,
пропорциональна обеим массам и обратно
пропорциональна квадрату расстояния
между ними — то есть:
Здесь
— гравитационная
постоянная,
равная
м³/(кг
с²).
Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.
В единицах СИ рекомендованное Комитетом данных для науки и техники (CODATA)[3] на 2008 год значение было
G = 6,67428(67)·10−11 м³·с−2·кг−1, или Н·м²·кг−2,
в 2010 году значение было исправлено на:
G = 6,67384(80)·10−11 м³·с−2·кг−1, или Н·м²·кг−2.
В октябре 2010 в журнале Physical Review Letters появилась статья[4], предлагающая уточнённое значение 6,67234(14), что на три стандартных отклонения меньше величины G, рекомендованной в 2008 г. Комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г. Пересмотр величины G, произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах[5].