
- •Закон Паскаля для жидкостей и газов
- •Вывод закона Архимеда для тела произвольной формы
- •Условие плавания тел
- •Практические следствия
- •[Править]Вывод
- •[Править]Определение
- •Вязкое (жидкое) трение
- •Давным-давно ...
- •Что же такое "смазка"?
- •Переход к турбулентности
- •Математическое определение
- •[Править]Правило Жуковского
- •[Править]Получение
- •[Править]Физический смысл
- •[Править]Сила Кориолиса в природе
- •Эксперимент Фуко
- •Физика эксперимента
- •[Править]Действующие маятники Фуко (в России и снг)
- •[Править]Интересные факты
- •Преобразования Лоренца в физике
- •[Править]Вид преобразований при коллинеарных (параллельных) пространственных осях
- •[Править]Вывод преобразований
- •[Править]Разные формы записи преобразований [править]Вид преобразований при произвольной ориентации осей
- •[Править]Преобразования Лоренца в матричном виде
- •[Править]Свойства преобразований Лоренца
- •[Править]Следствия преобразований Лоренца Изменение длины
- •[Править]Относительность одновременности
- •[Править]Замедление времени для движущихся тел [править]Связанные определения
- •[Править]История
- •Второй закон Ньютона в релятивистской механике
- •Понятие релятивистской массы
- •Классификация
- •[Править]По физической природе
- •[Править]По характеру взаимодействия с окружающей средой
- •Характеристики
- •[Править]Закон Гука
- •[Править]Нелинейные деформации
- •Вынужденные колебания гармонического осциллятора Консервативный гармонический осциллятор
- •Механика
- •[Править]Струна
- •Акустика
- •Примеры
- •В природе и технике
- •Классификации волн
- •[Править]Влияние субстанции
- •Источники ультразвука
- •Ультразвук в природе
- •Источники инфразвука
- •Свойства Ньютоновского тяготения
- •Принцип эквивалентности
- •Недостатки ньютоновской модели тяготения
- •Гравитационное поле в общей теории относительности
Преобразования Лоренца в физике
Преобразованиями
Лоренца в физике, в частности, в специальной
теории относительности (СТО),
называются преобразования, которым
подвергаются пространственно-временные
координаты
каждого
события при переходе от одной инерциальной
системы отсчета (ИСО) к
другой. Аналогично, преобразованиям
Лоренца при таком переходе подвергаются
координаты любого 4-вектора.
Чтобы явно различить преобразования Лоренца со сдвигами начала отсчёта и без сдвигов, когда это необходимо, говорят о неоднородных и однородных преобразованиях Лоренца.
Преобразования Лоренца без сдвигов начала отсчёта образуют группу Лоренца, со сдвигами — группу Пуанкаре, иначе называемую неоднородной группой Лоренца.
С математической точки зрения преобразования Лоренца — это преобразования, сохраняющие неизменной метрику Минковского, то есть, в частности, последняя сохраняет при них простейший вид при переходе от одной инерциальной системы отсчёта к другой (другими словами преобразования Лоренца — это аналог для метрики Минковского ортогональных преобразований, осуществляющих переход от одного ортонормированного базиса к другому, то есть аналог поворота координатных осей для пространства-времени). В математике или теоретической физике преобразования Лоренца могут относиться к любой размерности пространства.
Именно преобразования Лоренца, смешивающие — в отличие от преобразований Галилея — пространственные координаты и время, исторически стали основой для формирования концепции единого пространства-времени.
Следует заметить, что лоренц-ковариантны не только фундаментальные уравнения (такие, как уравнения Максвелла, описывающее электромагнитное поле, уравнение Дирака, описывающее электрон и другие фермионы), но и такие макроскопические уравнения, как волновое уравнение, описывающее (приближенно) звук, колебания струн и мембран, и некоторые другие (только тогда уже в формулах преобразований Лоренца под c следует иметь в виду не скорость света, а какую-то другую константу, например скорость звука). Поэтому преобразования Лоренца могут быть плодотворно использованы и в связи с такими уравнениями (хотя и в довольно формальном смысле, впрочем, мало отличающемся — в своих рамках — от их применения в фундаментальной физике).
[Править]Вид преобразований при коллинеарных (параллельных) пространственных осях
Если
ИСО
движется
относительно ИСО
с
постоянной скоростью
вдоль
оси
,
а начала
пространственных координат совпадают
в начальный момент времени в обеих
системах, то преобразования Лоренца
(прямые) имеют вид:
где — скорость света, величины со штрихами измерены в системе , без штрихов — в .
Эта форма преобразования (то есть при выборе коллинеарных осей), называемая иногда бустом (англ. boost) или лоренцевским бустом (особенно в англоязычной литературе), несмотря на свою простоту, включает, по сути, всё специфическое физическое содержание преобразований Лоренца, так как пространственные оси всегда можно выбрать таким образом, а при желании добавить пространственные повороты не представляет трудности (см. это в явном развёрнутом виде ниже), хотя и делает формулы более громоздкими.
Формулы, выражающие обратное преобразование, то есть выражающие
через
можно получить просто заменой на
(абсолютная величина относительной скорости движения систем отсчёта
одинакова при измерении её в обеих системах отсчёта, поэтому можно при желании снабдить штрихом, только при этом надо внимательно следить за тем, чтобы знак и определение соответствовали друг другу) и взаимной заменой штрихованных и
с нештрихованными. Или решая систему уравнений (1) относительно .
Надо иметь в виду, что в литературе преобразования Лоренца часто записывается для упрощения в системе единиц, где
, что действительно делает их вид более изящным.
Видно, что при преобразованиях Лоренца события, одновременные в одной системе отсчёта, не являются одновременными в другой (относительность одновременности), кроме того, у движущегося тела сокращается продольный размер по сравнению с тем, какой оно имеет в сопутствующей ему системе отсчёта (лоренцево сокращение), а ход движущихся часов замедляется, если наблюдать их из «неподвижной» системы отсчёта (релятивистское замедление времени).