
- •1.Понятие об электромагнитном поле и его проявлениях. Электрический заряд. Электризация тел.
- •2.Закон сохранения электрического заряда. Закон Кулона.
- •3.Напряженность электрического поля. Линии напряженности. Принцип суперпозиции полей.
- •4.Работа совершаемая силами электрического поля при перемещение заряда. Потенциал. Разность потенциалов.
- •5.Проводники в электрическом поле. Электростатическая защита.
- •6.Диэлектрики в электрическом поле. Поляризация диэлектриков.
- •7.Электроемкость проводника. Конденсаторы. Типы конденсаторов.
- •8. Соединение конденсаторов в батарею. Энергия заряженного конденсатора.
- •9. Физические основы проводимости металлов. Постоянный электрический ток и его характеристики.
- •10.Закон Ома для участка цепи. Вольтамперная характеристика участка.
- •11.Электродвижущая сила. Закон Ома для замкнутой цепи.
- •12.Параллельное и последовательное соединения источников тока и проводников.
- •13.Сопротивление, как электрическая характеристика резистора. Зависимость сопротивление от температуры. Явление сверхпроводимости.
- •14.Работа и мощность постоянного тока. Тепловое действие тока. Закон Джоуля –Ленца.
- •15.Электрический ток в металлах. Контактная разность потенциалов и работа выхода. Термоэлектронная эмульсия.
- •16.Электрический ток в электролитах. Законы Фарадея для электролиза.
- •17.Электрический ток в газах и вакууме. Типы самостоятельных разрядов.
- •18.Электрический ток в полупроводниках. Собственная и премисная проводимость полупроводников.
- •19. Электронно-дырочный переход и его особенности. Полупроводниковые приборы.
- •20. Открытие магнитного поля. Магнитное поле тока. Магнитное поле Земли.
- •21.Вектор магнитной индукции как силовая характеристика магнитного поля. Линии магнитной индукции.
- •22.Магнитное взаимодействие токов. Закон Ампера.
- •23.Действие магнитного поля на электрический заряд. Сила Лоренца.
- •24.Магнитосфера Земли. Магнитные свойства вещества.
- •25.Явление электромагнитной индукции. Опыты Фарадея.
- •26.Закон электромагнитной индукции. Правило Ленца.
- •27.Роль магнитных полей в явлениях происходящих на Солнце.
- •28.Явление самоиндукции. Эдс самоиндукции. Энергия магнитного поля.
- •29.Гармонические колебания. Уравнение гармонических колебаний.
- •30.Распространение колебаний в упругой среде. Волны и их характеристики. Звуковые волны.
- •31.Свободные электромагнитные колебания. Превращение энергии в закрытом колебательном контуре. Формула Томсона.
- •32.Вынужденные электромагнитные колебания. Получение переменного тока.
- •33.Индуктивность и емкость в цепи переменного тока. Закон Ома для полной цепи.
- •34.Преобразование переменного тока. Устройство и принцип действия трансформатора.
- •35.Действующие значения силы тока и напряжения. Работа и мощность переменного тока.
- •36.Электромагнитное поле и его распространение в виде электромагнитных волн. Свойства электромагнитных волн.
- •37.Открытый колебательный контур. Опыты Герца.
- •38. Изобретение радио а.С. Поповым. Физ. Основы радиосвязи.
- •39. Электромагнитная природа света. Скорость света. Принцип Гюйгенца.
- •40.Световой поток и освещенность. Закон освещенности. Светимость звезд.
- •41. Законы отражения и преломления света. Абсолютный показатель преломления.
- •43.Дифракция света. Дифракционная решетка.
- •44. Дисперсия света.Виды спектров испускания.Спектральный анализ и поглощения.
- •45.Электромагнитные излучения в различных диапазонах длин волн. Свойства и применение.
- •46.Квантовая гипотеза Планка. Энергия и импульс фотонов.
- •47.Внешний фотоэффект. Законы а.Г Столетова. Уравнение Эйнштейна.
- •48.Внутренний фотоэффект. Фотоэлементы с внутренним фотоэффектом.
- •49.Давление света . Опыты Лебедева. Химическое действие света.
- •50. Модель строения атома Резерфорда и Бора. Излучение и поглощение энергии.
- •51.Экспериментальные методы наблюдения и регистрации заряженных частиц.
- •52.Естественная радиоактивность. Закон радиоактивного распада. Свойства радиоактивных излучений.
- •53.Состав атомных ядер. Открытие нейтрона. Ядерные силы.
- •54.Дефект массы. Энергия связи.
- •55. Деление тяжелых атомных ядер. Ценная реакция деления. Ядерный реактор.
- •56.Физическая карта мира.
15.Электрический ток в металлах. Контактная разность потенциалов и работа выхода. Термоэлектронная эмульсия.
Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.
КОНТАКТНАЯ РАЗНОСТЬ ПОТЕНЦИАЛОВ - разность потенциалов, возникающая между находящимися в электрич. контакте проводниками в условиях тер-модинамич. равновесия. Между двумя проводниками, приведёнными в соприкосновение, происходит обмен электронами, в результате чего они заряжаются (проводник с меньшей работой выхода положительно, а с большей - отрицательно) до тех пор, пока потоки электронов в обоих направлениях не уравновесятся и во всей системе уровень эл.-хим. потенциала ( ферми-уровенъ )станет одинаковым. Установившаяся К. р. п. равна разности работ выхода проводников, отнесённой к заряду электрона.
Работа выхода, энергия, затрачиваемая на удаление электрона из твёрдого тела или жидкости в вакуум. Переход электрона из вакуума в конденсированную среду сопровождается выделением энергии, равной Р. в. Следовательно, Р. в. является мерой связи электрона с конденсированной средой; чем меньше Р. в., тем легче происходит эмиссия электронов.
Термоэлектронная эмиссия
- это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.
Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.
В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него ( т.к. электрод при потере электронов заряжается положительно).
Чем выше температура металла, тем выше плотность электронного облака.
16.Электрический ток в электролитах. Законы Фарадея для электролиза.
Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.
Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза. Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией
Первый закон Фарадея
В 1832 году Фарадей
установил, что масса M вещества,
выделившегося на электроде, прямо
пропорциональна электрическому заряду
Q, прошедшему через электролит:
если через электролит пропускается в течение времени t постоянный ток с силой тока I.
Коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.
Второй закон Фарадея
Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты.
Химическим
эквивалентом иона называется отношение
молярной массы A иона к его валентности
z. Поэтому электрохимический эквивалент
где F — постоянная Фарадея.