
- •120 Использование полупроводниковых диодов для вы-прямления переменного тока, различные выпрямитель-ные схемы.
- •121 Полупроводниковые материалы, полупроводники типа “n” и “p”, электронно-дырочная проводимость, примесная проводимость, свойства “p-n”-перехода.
- •122. Стабилизаторы постоянных тока и напряжения с использованием нелинейных резисторов.
- •123. Нелинейные цепи синусоидального тока как генераторы высших гармоник.
- •124. Триггерный эффект в последовательной феррорезонансной цепи. Феррорезонанс напряжений.
- •Феррорезонанс напряжений
- •125. Принцип действия биполярного транзистора.
- •126. Триггерный эффект в параллельной феррорезонансной цепи. Феррорезонанс токов.
- •127. Полевые транзисторы (принцип действия, конструкция, схемы включения, вольт-амперные характеристики). Преимущества перед биполярным транзистором.
- •Преимущества и недостатки полевых транзисторов перед биполярными.
- •Главные преимущества полевых транзисторов
- •Главные недостатки полевых транзисторов
- •128. Биполярные транзисторы (принцип действия, конструкция, схемы включения, вольт-амперные характеристики).
- •[Править]Устройство и принцип действия
- •[Править]Режим отсечки
- •[Править]Барьерный режим
- •[Править]Схемы включения
- •129. Как с помощью эксперимента определить корень характеристического уравнения p; для цепи первого порядка? Вычислите p, если Вам дана экспериментальная кривая uc(t) заряда конденсатора в rc - цепи.
Преимущества и недостатки полевых транзисторов перед биполярными.
Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)
Главные преимущества полевых транзисторов
Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
Усиление по току у полевых транзисторов намного выше, чем у биполярных.
Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.
Главные недостатки полевых транзисторов
У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).
128. Биполярные транзисторы (принцип действия, конструкция, схемы включения, вольт-амперные характеристики).
Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n(negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.
Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.
Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовленияинтегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.