
- •Раздел 5. Релейная защита.
- •5.1. Назначение релейной защиты и основные требования, предъявляемые к ней.
- •5.2. Измерительные трансформаторы тока и напряжения.
- •5.3. Максимальные токовые защиты.
- •5.4. Направленные мтз.
- •5.5. Токовые отсечки.
- •5.6. Защиты от коротких замыканий на землю.
- •5.7. Дистанционные защиты.
- •5.8. Дифференциальные защиты.
- •5.9. Высокочастотные защиты линий.
5.8. Дифференциальные защиты.
Очень часто по соображениям сохранения устойчивости, снижения возможных последствий КЗ требуется отключать оборудование без выдержки времени при КЗ в любой точке данного электрооборудования.
Дифференциальные защиты делятся на продольные и поперечные. В продольных дифзащитах токи сравниваются по концам защищаемого элемента (линии, трансформатора и др.), а в поперечных дифзащитах токи сравниваются в параллельных ветвях защищаемого элемента (параллельных линиях, параллельных ветвях обмотки статора генератора).
На рис. 5.27 показано распределение токов
по концам защищаемого элемента при КЗ
на линии (К2) и вне линии (К1). При
КЗ в точке К1 токи
и
равны по величине и направлены в одну
сторону. При КЗ в точке К2 ток
меняет направление и
.
Сравнение величин и направлений токов
производится в реле, которое подключается
к вторичным обмоткам одинаковых
трансформаторов тока (ТА), установленных
с обеих сторон защищаемого элемента и
соединенных между собой проводами.
Соединение выполняется таким образом,
чтобы при КЗ К1 в реле протекала
разность токов
и
,
,
а при КЗ K2
(см. рис. 5.28).
Основное распространение в продольных дифференциальных защитах получила схема с циркулирующими токами. Существует также схема с уравновешенными ЭДС, но она не применяется, т.к. для ее работы требуются специальные ТА, которые в нормальном режиме работают в режиме холостого хода.
Рассмотрим подключение реле и ТА в схеме с циркулирующими токами (см. рис. 5.28).
В нормальном режиме и при КЗ К1 (рис.
5.28, а) в реле протекает ток
при
и условии, что
;
,
,
т.е. реле не работает.
При КЗ в зоне защиты (рис. 5.28, б)
и реле работает, отключая защищаемый
элемент с обеих сторон без выдержки
времени. Продольная дифзащита - абсолютно
селективная, она действует при КЗ только
на своем участке, следовательно, ее не
нужно согласовывать по времени с защитами
соседних элементов. Зона защиты охватывает
участок сети, расположенный между ТА.
Для того чтобы защита не работала при
внешних КЗ,
.
При определении
учитывают следующие условия:
1)
.
(5.38)
Это первое условие, по которому рассчитывается дифзащит. Ток определяется по максимальному току, протекающему через защиту при внешнем КЗ, когда трехфазное КЗ возникает в конце линии;
2)
.
(5.39)
Это условие отстройки от броска тока намагничивания при включении (трансформаторов) и отстройки от обрыва соединительных проводов защиты.
В расчете из условий 1 и 2 выбирают наибольшее значение и его принимают за окончательное значение .
От величины зависит чувствительность защиты. Наличие обусловлено:
неидентичностью ТА;
резко возрастает в первый момент КЗ, когда состоит из периодической (
) и апериодической (
) составляющих. Ток быстро затухает и не отражает истинной картины КЗ. Но влияет на увеличение ТА, что увеличивает погрешность ТА;
на увеличение оказывает влияние остаточное намагничивание сердечников ТА.
Для снижения необходимо:
подбирать ТА с идентичными характеристиками намагничивания;
ТА должны иметь зону насыщения при большом значении . Трансформаторы тока класса D, рекомендуемые для применения в дифференциальных защитах, удовлетворяют этому требованию;
для выравнивания
и
необходимо выравнивать нагрузки вторичных обмоток ТА
, а также уменьшать величину либо ограничивать вторичную ЭДС
ТА путем увеличения ;
производить отстройку от , возникающего в первый момент КЗ (при t 0).
Поперечные дифференциальные защиты. Принцип действия поперечных дифзащит основан на сравнении величин токов в одноименных фазах двух параллельных линий или в двух параллельных ветвях статорной обмотки генератора.
ТА установлены в одноименных фазах двух
ЛЭП, причем
,
.
Реле включено на разность токов
.
В нормальном режиме
и при внешних КЗ
K1
для идеальных ТА (рис. 5.29)
.
Данное равенство справедливо, если
и токовая погрешность ТА
.
При КЗ на одной из линий (K2) (рис.
5.29) ток
,
и защита подействует на отключение
без выдержки времени. Поскольку в
реальных условиях существует некоторая
разница в
и
и
,
в нормальных режимах и при внешних КЗ
протекает ток, который называют током
небаланса
:
,
(5.40)
где
обусловлен погрешностью ТА;
- обусловлен неравенством сопротивлений
линий.
Первое условие определения :
(5.41)
Второе условие :
,
(5.42)
где - суммарный ток нагрузки параллельных линий. Это условие предотвращает срабатывание защиты при отключении ЛЭП с противоположного конца.
Третье условие:
(5.43)
Является условием недействия защиты при отключении одной из ЛЭП и внешнем КЗ.
Схема поперечной дифзащиты для двух параллельных ЛЭП с общим выключателем для обеих ЛЭП представлена на рис. 5.30.
В схеме используются два токовых реле КА1 и КА2, включенные на токи фаз А и С. Контакты разъединителей QS1 и QS2 выводят дифференциальную защиту из действия, если одна из параллельных ЛЭП отключена. Если обе ЛЭП включены, то QS1 и QS2 замкнуты, при КЗ на одной из линий работают КА1 и КА2 и через реле KL без выдержки времени отключается выключатель Q1. При отключении одной из ЛЭП дифзащита выводится из действия (разомкнуты QS1 и QS2) и КЗ на линии отключаются с помощью МТЗ (рис. 5.30).
,
а это приводит к недействию защиты в
пределах защищаемых линий.
Поперечная дифзащита может быть установлена на двух параллельных линиях с двухсторонним питанием. Тогда поперечная дифзащита выполняется направленной.
Направленная дифзащита отключает ту из параллельных ЛЭП, на которой произошло КЗ.
В случае двухстороннего питания поперечная дифзащита устанавливается с обеих сторон защищаемых линий.
Наличие «мертвых зон» поперечных дифзащит приводит к так называемому «каскадному» действию защиты. Поясним это подробнее.
«Мертвая зона»
защиты З1 (рис. 5.31) расположена вблизи
шин подстанции В, а
- вблизи подстанции А. При возникновении
КЗ К1 в «мертвой зоне»
не работает З1 и не отключает Q1,
защита З2 действует и отключается
выключатель Q3. В этом
случае весь ток
от двух систем С1 и С2 течет в
точку К1 через защиту З1, величина
его возрастает, и, если
,
то защита З1 сработает и отключит
Q1. Такое действие
защиты называют каскадным. Время
отключения КЗ в этом случае возрастает.
Для сокращения зоны каскадного действия
(
)
необходимо сокращать «мертвые зоны»
защит, что достигается снижением
.
Поперечные дифференциальные защиты на
ЛЭП не получили широкого распространения
из-за следующих недостатков: наличие
«мертвой зоны» и зоны каскадного
действия, относительно невысокое
значение коэффициента чувствительности,
поскольку
рассчитывается по условию отстройки
от
.
Кроме того, поперечная дифзащита может
быть установлена только на параллельных
линиях одинаковой длины, имеющих
одинаковое сопротивление.
Продольные дифзащиты применяются в качестве основных защит трансформаторов, генераторов, системы сборных шин. На ЛЭП их применение ограничено наличием соединительных проводов, подключаемых к вторичным обмоткам ТА. При большой длине ЛЭП соединительные провода имеют большую длину, что значительно увеличивает вторичную нагрузку ТА и их погрешности, поэтому продольные дифференциальные защиты можно устанавливать на ЛЭП, длина которых не превышает 10 км.