- •32 Вопрос
- •31 Вопрос
- •30 Вопрос
- •28Вопрос
- •27 Вопрос
- •26 Вопрос
- •25 Вопрос
- •23 Вопрос
- •22 Вопрос
- •21 Вопрос волновая функция
- •19 Вопрос Гипотеза де-Бройля. Волновые свойства вещества
- •18 Вопрос
- •17 Вопрос
- •16 Вопрос
- •15 Вопрос
- •14 Вопрос
- •Общий вид закона смещения Вина
- •13 Вопрос
- •12 Вопрос
- •11 Вопрос
- •10 Вопрос
- •9 ВопросПоляризация света. Естественный и поляризованный свет. Закон Малюса
- •8 Вопрос
- •7 Вопрос
- •6 Вопрос
- •5 Вопрос
- •4 Вопрос
- •3 Вопрос
- •2 Вопрос
- •1 Вопрос
28Вопрос
Атом состоит из ядра и окружающего его электронного "облака". Находящиеся в электронном облакеэлектроны несут отрицательный электрический заряд. Протоны, входящие в состав ядра, несутположительный заряд.В любом атоме число протонов в ядре в точности равно числу электронов в электронном облаке, поэтому атом в целом – нейтральная частица, не несущая заряда.Атом может потерять один или несколько электронов или наоборот – захватить чужые электроны. В этом случае атом приобретает положительный или отрицательный заряд и называется ионом. Практически вся масса атома сосредоточена в его ядре, так как масса электрона составляет всего лишь 1/1836 часть массы протона. Плотность вещества в ядре фантастически велика – порядка 1013 - 1014 г/см3. Спичечный коробок, наполненный веществом такой плотности, весил бы 2,5 миллиарда тонн!Внешние размеры атома – это размеры гораздо менее плотного электронного облака, которое примерно в 100000 раз больше диаметра ядра.
Атомы состоят из положительно заряженного ядра и электронного облака. а) В состав ядра атома водорода входит только 1 протон, а электронное облако заполняется одним электроном. б) В ядре атома углерода 6 протонов и 6 нейтронов, а в электронном облаке – 6 электронов. в) Существует также изотопный углерод, ядре которого на 1 нейтрон больше.
27 Вопрос
Квантовые числа – целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему
n
- Главное квантовое число: n = 1, 2, …
l - Квантовое число орбитального углового момента l может принимать только целые значения: l = 0, 1, 2, … ∞. Величина орбитального углового L момента связана с l соотношением L2 = ћ2l(l + 1).
M - Магнитное квантовое число. Проекция полного, орбитального или спинового углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента mj = j, j-1, j-2, …, - (j-1), - j. Для орбитального момента ml = l, l-1, l-2, …, -(l-1), -l. Для спинового момента электрона, протона, нейтрона, кварка ms = ±1/2
26 Вопрос
25 Вопрос
Атом водорода — физическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра может входить протонили протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон преимущественно находится в тонком концентрическом шаровом слое вокруг атомного ядра, образуя электронную оболочку атома. Наиболее вероятный радиус электронной оболочки атома водорода в стабильном состоянии равен боровскому радиусу a0 = 0,529 Å.
24 вопрос Опыт
Франка — Герца —
опыт, явившийся экспериментальным
доказательствомдискретности внутренней
энергии атома. Поставлен в 1913 Дж.
Франком и Г.
Герцем.
На рисунке приведена схема опыта. К катоду К и сетке C1 электровакуумной трубки, наполненной парами Hg (ртути), прикладывается разность потенциалов V, ускоряющаяэлектроны, и снимается зависимость силы тока I от V. К сетке C2 и аноду Априкладывается замедляющая разность потенциалов. Ускоренные в области I электроны испытывают соударения с атомами Hg в области II. Если энергия электронов после соударения достаточна для преодоления замедляющего потенциала в области III, то они попадут на анод. Следовательно, показания гальванометра Г зависят от потери электронами энергии при ударе.
В опыте наблюдался монотонный рост I при увеличении ускоряющего потенциала вплоть до 4,9 В, то есть электроны с энергией Е < 4,9 эВ испытывали упругие соударения с атомами Hg и внутренняя энергия атомов не менялась. При значении V = 4,9 В (и кратных ему значениях 9,8 В, 14,7 В) появлялись резкие спады тока. Это определённым образом указывало на то, что при этих значениях V соударения электронов с атомами носят неупругий характер, то есть энергия электронов достаточна для возбуждения атомов Hg. При кратных 4,9 эв значениях энергии электроны могут испытывать неупругие столкновения несколько раз.
Таким образом, опыт Франка — Герца показал, что спектр поглощаемой атомом энергии не непрерывен, а дискретен, минимальная порция (квант электро-магнитного поля), которую может поглотить атом Hg, равна 4,9 эВ. Значение длины волны λ = 253,7 нм свечения паров Hg, возникавшее при V > 4,9 В, оказалось в соответствии со вторым постулатом Бора
,
где E0 и E1 — энергии основного и возбужденного уровней энергии. В опыте Франка — Герца, E0 — E1 = 4,9 эв.
Артур Комптон, повторив (1922—1923) опыт Франка — Герца, обнаружил, что при V > 4,9 В пары Hg начинают испускать свет с частотой ν = ΔE/h, где ΔE = 4,9 эВ (h — постоянная Планка). Таким образом, возбуждённые электронным ударом атомы Hg испускают фотон с энергией 4,9 эВ и возвращаются в основное состояние.
