Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Информатика 4 шрифт!.docx
Скачиваний:
1
Добавлен:
25.09.2019
Размер:
134.79 Кб
Скачать

Билет №1.

Место информатики в научном мировоззрении

А теперь я вам расскажу, как появилась наука информатика. Мой рассказ будет сопровождаться слайдами, можно самое основное записывать в своей тетради.

Окружающий нас мир бесконечно многообразен. Бесплодны попытки человека понять любой его объект, любое явление в исчерпывающей полноте. С зарождения науки в древности и до наших дней основным методическим принципом познания является моделирование. Модель — это упрощенное по сравнению с реальностью описание объекта или явления, учитывающее только некоторые существенные, с точки зрения цели моделирования, его свойства. Моделирование всегда связано с абстрагированием, с выделением общего из множества частностей. Любой ученый сознает, что понять — это значит найти общность, отвлекшись от частностей, а затем объяснить частности через эту понятую общность.

Одним из первых обобщенных, абстрактных понятий науки стало понятие «вещество». В разнообразии материальных объектов ученые пытались увидеть некоторое единство, отыскать «первоматерию», атомы вещества. Эта идея развивалась от философии древней Греции (Демокрит, Эпикур, Лукреций) до самой современной квантовой теории вещества. После разгадки природы вещества, его структуры казалось, что все в мире можно объяснить, описав его как совокупность взаимодействующих материальных частиц.

Следующим обобщающим понятием в истории науки стало понятие «энергия». Его появление было связано с развитием техники, созданием двигателей, технических преобразователей энергии. Наука стала активно использовать энергетический язык в описании природы. Физические, химические, биологические процессы стали рассматриваться с позиции передачи и преобразования энергии. Желая исследовать все более сложные объекты в технике, биологии, обществе, наука встала перед фактом невозможности детального описания их поведения на языке материально-энергетических моделей.

В середине XX века появляется и развивается но¬вая научная дисциплина — кибернетика. Ее основатель (1948) — американский математик Норберт Винер. Термин «кибернетика» на греческом языке означает «искусство управления». Н.Винер назвал кибернетикой науку об управлении и связи в живом организме и машине. Объекты, рассматриваемые с позиции кибернетики, принято называть кибернетическими системами. В дальнейшем кибернетический подход стал применяться и к описанию социумов (социальных объектов и явлений).

Центральным понятием кибернетики является информация. Между элементами кибернетической системы, а также между различными системами имеют место информационные взаимодействия, т. е. обмен управляющими сигналами, знаками, командами. В рамках кибернетики не рассматривается физическое, энергетическое взаимодействие, а только информационное.

Кибернетика породила новый системно-информационный взгляд на природу. Вещество—энергия—информация — это три точки зрения, три стороны, с коорых наука сумела посмотреть на бесконечно разнообразный мир.

В 60-70-е годы XX века информатика выделилась из кибернетики как самостоятельная научная дисциплина. Предметом информатики является собственно информация, способы ее представления, передачи и обработки. В современном виде информатика оформилась с появлением и развитием электронно-вычислительных машин (ЭВМ).

Билет №2

Понятие информация является одним из фундаментальных в современной науке и базовым для информатики. Наряду с такими понятиями, как вещество и энергия, пространство и время, оно составляет основу современной картины мира, ее относят к фундаментальным философским категориям. Понятие информации многозначно и имеет множество определений, раскрывающих ту или иную грань этого понятия. В зависимости от области знания существуют различные подходы к определению понятия информации.

В философском словаре говорится, что информация (лат. informatio — разъяснение, изложение) — это, во-первых, некоторые сведения, совокупность каких-либо данных, знаний; во-вторых — одно из основных понятий кибернетики [1, с.172 ]

В неживой природе понятие информации связывают с понятием отражения, отображения. В быту под информацией понимают сведения, которые нас интересуют, т.е. сведения об окружающем мире и протекающем в нем процессах, воспринимаемые человеком или специальными устройствами (субъективный подход). Информация для человека — это знания, которые он получает из различных источников. С помощью всех своих органов чувств человек получает информацию из внешнего мира.

В лингвистике под информацией понимают не любые сообщения, а только те из них, которые обладают новизной или полезностью, т.е. учитывается смысл сообщения.

Под информацией в технике понимают сообщения, передаваемые в форме знаков или сигналов.

В теории связи под информацией принято понимать любую последовательность символов, не учитывая их смысл.

В теории информации под информацией понимают не любые сведения, а лишь те, которые снимают полностью или уменьшают существующую до их получения неопределенность. По определению К. Шеннона, информация — это снятая неопределенность.

Между информатикой и кибернетикой существует тесная связь. Основанная американским ученым Норбертом Винером в конце 40-х годов 20 в., кибернетика породила современную информатику, выполнила роль одного из ее источников. Сейчас кибернетика входит в информатику как составная часть. Кибернетика имеет дело со сложными системами: машинами, живыми организмами, общественными системами. Кибернетику интересуют процессы взаимодействия между такими системами или их компонентами. Рассматривая такие взаимодействия как процессы управления, кибернетику определяют как науку об общих свойствах процессов управления в живых и неживых системах. Информация между кибернетическими системами передается в виде некоторых последовательностей сигналов. Выходные сигналы одних участников обмена являются входными для других.

Под информацией в кибернетике понимается любая совокупность сигналов, воздействий или сведений, которые некоторая система воспринимает от окружающей среды (входная информация), выдает в окружающую среду (выходная информация) или, наконец, хранит в себе (внутренняя, внутрисистемная информация) [2, c. 22].

С точки зрения кибернетики, информацией является содержание передаваемых сигнальных последовательностей. В частности, любой текст на каком либо языке есть последовательность букв (в письменной форме) или звуков (в устной форме), которые можно рассматривать как графические или акустические сигналы.

Еще один подход к определению информации таков: средства вычислительной техники обладают способностью обрабатывать информацию автоматически, без участия человека, и ни о каком знании или незнании здесь речь идти не может. Эти средства могут работать с искусственной, абстрактной и даже ложной информацией, не имеющей объективного отражения ни в природе, ни в обществе.

Информация — это продукт взаимодействия данных и адекватных методов.

Данные — это зарегистрированные сигналы. Данные несут в себе информацию о событиях, произошедших в материальном мире, поскольку они являются регистрацией сигналов, возникших в результате этих событий. Однако данные не тождественны информации. Для того чтобы извлечь информацию из данных необходимо наличие метода. [3, с.13]

Информацию следует считать особым видом ресурса, т.е. запаса некоторых сведений об объекте. Однако, в отличие от материальных ресурсов, информация является неистощимым ресурсом и предполагает существенно иные методы воспроизведения и обновления.

Свойства информации:

запоминаемость — возможность хранения информация (мы запоминаем макроскопическую информацию);

передаваемость — способность информации к копированию;

воспроизводимость — неиссякаемость: при копировании информация остается тождественной самой себе;

преобразуемость — преобразование информации связанное с ее уменьшением;

стираемость — преобразование информации, когда ее количество становится равным нулю;

объективность и субъективность — информация объективна, если она не зависит от чьего-либо мнения, суждения;

достоверность — информация достоверна, если она отражает истинное положение дел;

полнота — характеризует качество информации и определяет достаточность данных для принятия решений или для создания новых данных на основе имеющихся;

адекватность — степень соответствия реальному объекту;

доступность — мера возможности получить ту или иную информацию;

актуальность — степень соответствия информации текущему моменту времени.

Информация может быть непрерывной и дискретной. Если источник вырабатывает непрерывный сигнал (изменяющийся во времени физический процесс), то соответствующая информация является непрерывной. Если же сигнал от источника принимает конечное число значений, которые могут быть пронумерованы, то соответствующая информация является дискретной. Непрерывное сообщение можно преобразовать в дискретное. Передача информации с помощью азбуки Морзе — это пример дискретной связи.

Билет№3.

Информационные процессы в природе, обществе, технике. Информационная деятельность человека.

В современном мире роль информатики, средств обработки, передачи, накопления информации неизмеримо возросла. Средства информатики и вычислительной техники сейчас во многом определяют научно-технический потенциал страны, уровень развития ее народного хозяйства, образ жизни и деятельности человека.

Для целенаправленного использования информации ее необходимо собирать, преобразовывать, передавать, накапливать и систематизировать. Все эти процессы, связанные с определенными операциями над информацией, будем называть информационными процессами. Получение и преобразование информации является необходимым условием жизнедеятельности любого организма. Даже простейшие одноклеточные организмы постоянно воспринимают и используют информацию, например о температуре и химическом составе среды для выбора наиболее благоприятных условий существования. Живые существа способны не только воспринимать информацию из окружающей среды с помощью органов чувств, но и обмениваться ею между собой.

Человек также воспринимает информацию с помощью органов чувств, а для обмена информацией между людьми используются языки. За время развития человеческого общества таких языков возникло очень много. Прежде всего, это родные языки (русский, татарский, английский и др.)» на которых говорят многочисленные народы мира. Роль языка для человечества исключительно велика. Без него, без обмена информацией между людьми было бы невозможным возникновение и развитие общества.

Информационные процессы характерны не только для живой природы, человека, общества. Человечеством созданы технические устройства — автоматы, работа которых также связана с процессами получения, передачи и хранения информации. Например, автоматическое устройство, называемое термостатом, воспринимает информацию о температуре помещения и в зависимости от заданного человеком температурного режима включает или отключает отопительные приборы.

Деятельность человека, связанную с процессами получения, преобразования, накопления и передачи информации, называют информационной деятельностью.

Тысячелетиями предметами труда людей были материальные объекты. Все орудия труда от каменного топора до первой паровой машины, электромотора или токарного станка были связаны с обработкой вещества, использованием и преобразованием энергии. Вместе с тем человечеству пришлось решать задачи управления, задачи накопления, обработки и передачи информации, опыта, знания, возникают группы людей, чья профессия связана исключительно с информационной деятельностью. В древности это были, например, военачальники, жрецы, летописцы, затем — ученые и т. д.

Однако число людей, которые могли воспользоваться информацией из письменных источников, было ничтожно мало. Во-первых, грамотность была привилегией крайне ограниченного круга лиц и, во-вторых, древние рукописи создавались в единичных (иногда единственных) экземплярах.

Новой эрой в развитии обмена информацией стало изобретение книгопечатания. Благодаря печатному станку, созданному И. Гутенбергом в 1440 году, знания, информация стали широко тиражируемыми, доступными многим людям. Это послужило мощным стимулом для увеличения грамотности населения, развития образования, науки, производства.

По мере развития общества постоянно расширялся круг людей, чья профессиональная деятельность была связана с обработкой и накоплением информации. Постоянно рос и объем человеческих знаний, опыта, а вместе с ним количество книг, рукописей и других письменных документов. Появилась необходимость создания специальных хранилищ этих документов — библиотек, архивов. Информацию, содержащуюся в книгах и других документах, необходимо было не просто хранить, а упорядочивать, систематизировать. Так возникли библиотечные классификаторы, предметные и алфавитные каталоги и другие средства систематизации книг и документов, появились профессии библиотекаря, архивариуса.

В результате научно-технического прогресса человечество создавало все новые средства и способы сбора, хранения, передачи информации. Но важнейшее в информационных процессах — обработка, целенаправленное преобразование информации осуществлялось до недавнего времени исключительно человеком.

Вместе с тем постоянное совершенствование техники, производства привело к резкому возрастанию объема информации, с которой приходится оперировать человеку в процессе его профессиональной деятельности.

Развитие науки, образования обусловило быстрый рост объема информации, знаний человека. Если в начале прошлого века общая сумма человеческих знаний удваивалась приблизительно каждые пятьдесят лет, то в последующие годы — каждые пять лет.

Выходом из создавшейся ситуации стало создание компьютеров, которые во много раз ускорили и автоматизировали процесс обработки информации.

Первая электронная вычислительная машина «ЭНИАК» была разработана в США в 1946 году. В нашей стране первая ЭВМ была создана в 1951 году под руководством академика В. А. Лебедева.

В настоящее время компьютеры используются для обработки не только числовой, но и других видов информации. Благодаря этому информатика и вычислительная техника прочно вошли в жизнь современного человека, широко применяются в производстве, проектно-конструкторских работах, бизнесе и многих других отраслях.

Компьютеры в производстве используются на всех этапах: от конструирования отдельных деталей изделия, его дизайна до сборки и продажи. Система автоматизированного производства (САПР) позволяет создавать чертежи, сразу получая общий вид объекта, управлять станками по изготовлению деталей. Гибкая производственная система (ГПС) позволяет быстро реагировать на изменение рыночной ситуации, оперативно расширять или сворачивать производство изделия или заменять его другим. Легкость перевода конвейера на выпуск новой продукции дает возможность производить множество различных моделей изделия. Компьютеры позволяют быстро обрабатывать информацию от различных датчиков, в том числе от автоматизированной охраны, от датчиков температуры для регулирования расходов энергии на отопление, от банкоматов, регистрирующих расход денег клиентами, от сложной системы томографа, позволяющей « увидеть» внутреннее строение органов человека и правильно поставить диагноз.

Компьютер находится на рабочем столе специалиста любой профессии. Он позволяет связаться по специальной компьютерной почте с любой точкой земного шара, подсоединиться к фондам крупных библиотек не выходя из дома, использовать мощные информационные системы — энциклопедии, изучать новые науки и приобретать различные навыки с помощью обучающих программ и тренажеров. Модельеру он помогает разрабатывать выкройки, издателю компоновать текст и иллюстрации, художнику — создавать новые картины, а композитору — музыку. Дорогостоящий эксперимент может быть полностью просчитан и имитирован на компьютере.

Разработка способов и методов представления информации, технологии решения задач с использованием компьютеров, стала важным аспектом деятельности людей многих профессий.

Билет №4

“Информационный процесс - это процесс, в результате которого осуществляются прием, передача (обмен), преобразование и использование информации”.

б) “Действия, выполняемые с информацией, называются информационными процессами. Есть три типа информационных процессов: хранение, передача и обработка информации”.

в) “Все процессы, связанные с определенными операциями над информацией, будем называть информационными процессами”.

Проанализируйте эти определения в сравнении друг с другом.

3. В учебниках, цитировавшихся в предыдущем задании, нет определения процесса передачи информации. Вот что об этом процессе в них говорится:

а) “Человеку постоянно приходится участвовать в процессе передачи информации. Передача может происходить при непосредственном разговоре между людьми, через переписку, с помощью технических средств связи: телефона, радио, телевидения. Такие средства связи называются каналами передачи информации”.

б) “Первым средством обмена информацией между людьми стала человеческая речь... Человечество научилось использовать для передачи и сохранения информации рисунки, чертежи, схемы, а впоследствии - фотографии, телевизионные изображения и т.д. ...По мере развития общества, появления технических средств связи все большее внимание науки стали привлекать процессы передачи информации. До XIX века основным носителем информации была письменность, а средством связи - почта.

Положение принципиально изменилось с изобретением телеграфа, телефона, а затем радио, телевидения и других современных видов связи”.

Билет№5

Воспринимая информацию с помощью органов чувств, человек стремится зафиксировать ее так, чтобы она стала понятной и другим, представляя ее в той или иной форме.

Музыкальную тему композитор может наиграть на пианино, а затем записать с помощью нот. Образы, навеянные все той же мелодией, поэт мо­жет воплотить в виде стихотворения, хореограф выразить танцем, а художник — в картине.

Человек выражает свои мысли в виде предложений, составленных из слов. Слова, в свою очередь, состоят из букв. Это — алфавитное представление информации. Форма представления одной и той же информации может быть различной. Это зависит от цели, которую вы перед собой поставили. С подобными операциями вы сталкиваетесь на уроках математики и физики, когда представляете решение в разной форме. Например, решение задачи: «Найти значение математического выражения у = 5х + 3, при х = -3; -2; -1; 0; 1; 2; 3» можно представить в табличной или графической форме.

Для этого вы пользуетесь визуальными средствами представления информации: числами, таблицей, рисунком.

Таким образом, информацию можно представить в различной форме:

знаковой письменной, состоящей из различных знаков, среди которых принято выделять:

символьную в виде текста, чисел, специальных символов (на­

пример, текст учебника);

графическую (например, географическая карта);

табличную (например, таблица записи хода физического эксперимента);

в виде жестов или сигналов (например, сигналы регулировщика

дорожного движения);

устной словесной (например, разговор).

Форма представления информации очень важна при ее передаче: если человек плохо слышит, то передавать ему информацию в звуковой форме нельзя; если у собаки слабо развито обоняние, то она не может работать в розыскной службе. В разные времена люди пе­редавали информацию в различной форме с помощью: речи, дыма, барабанного боя, звона колоколов, письма, телеграфа, радио, телефо­на, факса. Независимо от формы представления и способа передачи информации, она всегда передается с помощью какого-либо языка.

На уроках математики вы используете специальный язык, в основе которого — цифры, знаки арифметических действий и отношений. Они составляют алфавит языка математики. На уроках физики при рассмотрении какого-либо физического явления вы используете характерные для данного языка специальные символы, из которых составляете формулы. Формула — это слово на языке физики.

На уроках химии вы также используете определенные символы, знаки, объединяя их в «слова» данного языка.

Существует язык глухонемых, где символы языка — определенные знаки, выражаемые мимикой лица и движениями рук.

Основу любого языка составляет алфавит — набор однозначно оп­ределенных знаков (символов), из которых формируется сообщение. Языки делятся на естественные (разговорные) и формальные. Алфавит естественных языков зависит от национальных традиций. Формальные языки встречаются в специальных областях человеческой деятельности (математике, физике, химии и т. д.). В мире насчитывается около 10 000 разных языков, диалектов, наречий. Многие разговорные языки произошли от одного и того же языка. Например, от латинского языка образовались французский, испанский, итальянский и другие языки.

Билет№6

В настоящее время все средства массовой информации говорят об ускорении научно-технического процесса, который характеризуется постоянно растущим потоком информации. Для быстрого нахождения необходимой информации, экономии труда и времени человека создаются автоматизированные информационные системы (АИС) и банки информации на базе современных мощных ЭВМ. В промышленности получили широкое распространение автоматизированные системы управления производством (АСУП) и технологическими процессами (АСУ ТП). АИС, АСУП и АСУ ТП представляют собой человеко-машинные системы. В них за человеком оставлена высшая функция - принятия решения, а техника через средства отображения информации снабжает его необходимыми данными.

Перечисленные системы широко применяются в для управления крупными производствами, технологическими процессами, для информационного обеспечения различных директивных органов, ученых и специалистов.

Информация человеку-оператору в АСУ ТП представляется в основном символами и зрительными образами, сформированными на тех или иных устройствах отображения информации (УОИ). УОИ обеспечивают связь человека с техническими средствами и переводят машинные языки в языки знаков, известных человеку (дисплеи, принтеры, большие экраны, графопостроители, синтезаторы речи).

Можно на примере структурной схемы АСУ ТП (рис. 1.1.) раскрыть задачи, решаемые подсистемой сбора, обработки и отображения информации в автоматизированных системах.

Основу АСУ ТП составляют ЭВМ, способные решать математические и логические задачи с заданной точностью, принимать, обрабатывать, запоминать, хранить и выдавать различную информацию. В информационных процессах важную роль играют способы представления информации человеку-оператору. Это индикация, регистрация, воспроизведение, размножение, отображение информации [9].

Процессы представления информации тесно связаны с вопросами психологии человека-оператора. Без их взаимодействия невозможно построить ни одной информационной системы, так как на человека возлагаются не только функции контроля за работой устройств, но и оценка обстановки о ходе процесса, принятие и корректировка решения.

Под информацией понимают любые сведения о каком-либо событии или объекте.

Понятие информации в технике родственно понятию отражения, рассматриваемому в философии. Свойство отражения присуще не только объектам, но и процессу и заключается в том, что между состояниями взаимодействующих объектов существует определенная связь. Но философию интересуют прежде всего качественные различия между типами отображения, а нас будут интересовать количественные описания. Например: соответствие между положением стрелки вольтметра и напряжением на его клеммах - стрелка отклоняется вправо, соответственно имеется рост напряжения на клеммах. То есть в этой ситуации один объект (стрелка) отражает другой (напряжение), или один объект содержит информацию о другом. На основании этого примера можно сказать, что информация есть отражение одного объекта другим. Один объект может быть отражен несколькими другими объектами (одними - лучше, другими - хуже) [7]. Подключив вместо вольтметра осциллограф, мы получим больше информации об интересующем нас процессе.

Получение информации связано с восприятием и оценкой объекта или процесса. При этом необходимо отделить информацию от шумов. Результатом восприятия информации датчиками является сигнал в форме, удобной для передачи или обработки.

Передача информации состоит в переносе ее на расстояние посредством сигналов различной физической природы по механическим, оптическим, акустическим, электромагнитным и другим каналам связи. Чаще всего используются электрические и электромагнитные каналы связи.

Обработка информации заключается в машинном решении задач, связанных с преобразованием информации. Обработка производится при помощи устройств, осуществляющих аналоговые или цифровые преобразования поступающих величин или функций. Промежуточным этапом обработки является хранение информации в запоминающих устройствах. (Пример преобразования - контроллер синтезатора речи.)

Представление (отображение) информации требуется в тех случаях, когда в процессе управления принимает участие человек. Отображение заключается в демонстрации изображений, содержащих качественные и количественные характеристики информации, циркулирующей в системе. Для этого используются различные устройства отображения информации и регистрирующие устройства. Например, цифробуквенные индикаторы, ЭЛТ, мнемосхемы, табло, графические регистрирующие приборы - графопостроители и т.д.

Управляющее воздействие состоит в том, что несущий информацию сигнал осуществляет регулирование или управление, вызывая изменения в объекте управления. Воздействие осуществляется с помощью исполнительных устройств, расположенных на объекте (реле, серводвигатели и т.п.).

Информацию, фиксированную в определенной форме, называют сообщением. Сообщение может иметь самое различное содержание, но независимо от этого всегда отображается в виде сигнала (электрического, звукового, светового и др.). Сообщение - это форма представления информации.

Формирование любого сигнала связано с передачей сообщения от отправителя (источника) к получателю (приемнику), которые разделены пространством и временем. Поэтому сигнал можно характеризовать как средство перенесения информации в пространстве и времени. Это определение, однако, не учитывает строение сигнала как объекта исследования. Хотя сигнал всегда связан с материальным объектом, большинство конкретных свойств этого объекта несущественно. Например: при ознакомлении с печатным текстом нам неважно, какого сорта бумага или какого цвета чернила. Различие текстов (в общем случае - сигналов) в первую очередь определяется по различию описаний, то есть по различию состояний объекта. Следовательно, можно сказать, что в качестве сигналов используются не сами сигналы, а их состояния. Образование сигнала происходит за счет изменения состояния объекта.

Чтобы было соответствие между сообщением и сигналом, т.е. была возможность получения сообщения из сигнала, сигнал должен формироваться по определенным правилам. Построение сигнала по определенным правилам называют кодированием.

Таким образом, в материально-энергетической форме информация всегда проявляется в виде сигналов.

Первичным и неделимым элементом информации следует считать двоичное событие, то есть утверждение или отрицание, наличие или отсутствие. Двоичное событие условно представляется единицей или нулем, импульсом или паузой. Событие не имеет геометрических измерений и представляется точкой (рис. 1.2).

Множество событий, упорядоченное в одном измерении, называется величиной (рис. 1.2, б). Если величина принимает счетное множество значений, то она является дискретной. Если число принимаемых значений бесконечно, то величина является непрерывной. Геометрически величина представляется линией.

Если существует соответствие между величиной и другой величиной, или между величиной и пространством, или величиной и временем, то говорят о функции, Х(N), X(T) (рис. 1.2, в). Геометрическая функция может быть представлена как поле событий. Различают функции с непрерывным и дискретным аргументом.

Комплекс информацииX(T,N)(рис. 1.2, г) представляет собой соответствие между величиной, с одной стороны, и временем и пространством - с другой. Геометрически комплекс информации представляется трехмерным полем событий.

Информация описывается моделями с различной мерностью: событие представляет собой нульмерную информацию; величина - одномерную; функция - двухмерную; комплекс - трехмерную.

Следуя таким путем далее, можно представить четырехмерную,..., n-мерную информацию. Многомерная информация моделируется многомерным пространством.

Источники и формы сообщений и соответствующие им сигналы бывают дискретные и непрерывные.

Дискретными называются сообщения, состоящие из отдельных элементов (символов, букв, импульсов), принимающих конечное число различных значений. Примерами дискретных сообщений являются команды в системах управления, выходная информация ЭВМ в виде кодовых групп или массивов чисел, телеграфные сообщения. Такие сообщения составляются из конечного числа элементов, следующих друг за другом в определенной последовательности. Набор элементов, из которых составляются сообщения, обычно называют алфавитом.

Непрерывными называются такие сообщения, которые могут принимать в некоторых пределах любые значения и являются непрерывными функциями времени. Примеры: телефонные сообщения, телеметрическая информация и т.д.

В реальных условиях указанные различия между непрерывными и дискретными сообщениями оказываются непринципиальными, и путем дискретизации (во времени) и квантования (по уровню) можно непрерывное сообщение заменить дискретным.

Билет№7

Количеством информации называют числовую характеристику сигнала, отражающую ту степень неопределенности (неполноту знаний), которая исчезает после получения сообщения в виде данного сигнала. Эту меру неопределенности в теории информации называют энтропией. Если в результате получения сообщения достигается полная ясность в каком-то вопросе, говорят, что была получена полная или исчерпывающая информация и необходимости в получении дополнительной информации нет. И, наоборот, если после получения сообщения неопределенность осталась прежней, значит, информации получено не было (нулевая информация).

Приведенные рассуждения показывают, что между понятиями информация, неопределенность и возможность выбора существует тесная связь. Так, любая неопределенность предполагает возможность выбора, а любая информация, уменьшая неопределенность, уменьшает и возможность выбора. При полной информации выбора нет. Частичная информация уменьшает число вариантов выбора, сокращая тем самым неопределенность.

Определить понятие “количество информации” довольно сложно. В решении этой проблемы существуют два основных подхода. Исторически они возникли почти одновременно. В конце 40-х годов XX века один из основоположников кибернетики американский математик Клод Шеннон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к “объемному” подходу.

Вероятностный подход

Подход к информации как мере уменьшения неопределенности знаний позволяет количественно измерять информацию, что чрезвычайно важно для информатики. Рассмотрим вопрос об определении количества информации более подробно на конкретных примерах.

Пусть у нас имеется монета, которую мы бросаем на ровную поверхность. С равной вероятностью произойдет одно из двух возможных событий — монета окажется в одном из двух положений: «орел» или «решка».

Можно говорить, что события равновероятны, если при возрастающем числе опытов количества выпадений «орла» и «решки» постепенно сближаются. Например, если мы бросим монету 10 раз, то «орел» может выпасть 7 раз, а решка — 3 раза, если бросим монету 100 раз, то «орел» может выпасть 60 раз, а «решка» — 40 раз, если бросим монету 1000 раз, то «орел» может выпасть 520 раз, а «решка» — 480 и так далее.

В итоге при очень большой серии опытов количества выпадений «орла» и «решки» практически сравняются.

Перед броском существует неопределенность наших знаний (возможны два события), и, как упадет монета, предсказать невозможно. После броска наступает полная определенность, так как мы видим (получаем зрительное сообщение), что монета в данный момент находится в определенном положении (например, «орел»). Это сообщение приводит к уменьшению неопределенности наших знаний в два раза, так как до броска мы имели два вероятных события, а после броска — только одно, то есть в два раза меньше.

Объемный подход

В двоичной системе счисления знаки 0 и 1 будем называть битами (от английского выражения Binary digiTs – двоичные цифры). Создатели компьютеров отдают предпочтение именно двоичной системе счисления, потому что в техническом устройстве наиболее просто реализовать два противоположных физических состояния. Например: некоторый физический элемент, имеющий два различных состояния: намагниченность в двух противоположных направлениях; прибор, пропускающий или нет электрический ток; конденсатор, заряженный или незаряженный и т.п. В компьютере бит является наименьшей возможной единицей информации. Объем информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации, подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом, в частности, невозможно нецелое число битов (в отличие от вероятностного подхода).

Группа из 8 битов информации называется байтом. Если бит — минимальная единица информации, то байт ее основная единица. Существуют производные единицы информации: килобайт (кбайт, кб), мегабайт (Мбайт, Мб) и гигабайт (Гбайт, Гб).

1 кб = 1024 байта = 210 (1024) байтов. 1 Мб = 1024 кбайта = 220 (1024 х 1024) байтов.

1 Гб = 1024 Мбайта = 230 (1024 х 1024 х 1024) байтов.

Эти единицы чаще всего используют для указания объема памяти ЭВМ.

Между вероятностным и объемным количеством информации соотношение неоднозначное. Далеко не всякий текст, записанный двоичными символами, допускает измерение объема информации в кибернетическом смысле, но заведомо допускает его в объемном. Далее, если некоторое сообщение допускает измеримость количества информации в обоих смыслах, то они не обязательно совпадают, при этом кибернетическое количество информации не может быть больше объемного.

Билет№8.

Система счисления — это совокупность приемов и правил, по которым числа записываются и читаются.

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа)не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая — 7 единиц, а третья — 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 . 102 + 5 . 101 + 7 . 100 + 7 . 10—1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления — количество различных цифр, используемых для изображения чисел в данной системе счисления.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно,возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием  q  означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2 + ... + a1 q1 + a0 q0 + a-1 q-1 + ... + a-m q-m,

где  ai  — цифры системы счисления;   n и m — число целых и дробных разрядов, соответственно. 

В позиционной системе счисления любое число может быть представлено, как:

N = dn-1,dn-2,....d1,d0,d-1,d-2......d-m

где: n - количество целых цифр (целая часть);

m - количество знаков после запятой;

, ] – десятичная часть;

d – цифра (значение числа).

 В позиционных системах счисления под величиной числа понимается значение следующего полинома:

N = dn-1*bb-1,dn-2*bb-2,....,d0*b0,d-1*b-1,......d-m*b-m

где: b – основание системы счисления;

di – цифра данного разряда числа: 

n – число цифр (знаков) целой части;

m – число цифр (знаков) дробной части.

Пример: число 321,710=N

N = 3*102+2*101+1*100+7*10-1- значение числа

1*23+0*22+1*21+1*20+1*2-1+1*2-2=8+2+1+0.5+0.25=11.75 - значение  всех цифр подразумевается только вдесятичной форме.

b<16 (2-я, 8-я, 16-я системы счисления; но существуют ещё и 5-я, 3-я, 7-я системы счисления).

 

Соотношение между числами в системах счисления, используемых в ЭВМ 

 

10-я система счисления

2-я система счисления

8-я система счисления

16-я система счисления

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

0

1

2

3

4

5

6

7

8

9

А

 

Билет№9.

Общий принцип 1: чтобы перевести число в некоторую систему счисления с основанием M ( цифрами 0, ..., M-1 ), иначе говоря, в M-ичную СС, нужно представить его в виде:

C = an * Mn + an-1 * Mn-1 + ... + a1 * M + a0.

a1..n - цифры числа, из соответствующего диапазона. an - первая цифра, a0 - последняя.

Сравните эту запись с представлением числа, например, в десятичной системе.

Из системы с большим основанием - в систему с меньшим

Очевидно, чтобы найти такое представление, можно

1. разделить число нацело на M, остаток - a0.

2. взять частное и проделать с ним шаг 1, остаток будет a1...

И так, пока частное не равно 0.

Искомое число будет записано в новой системе счисления полученными цифрами.

Общий принцип 2: Если основание одной системы - степень другого, например, 2 и 16, то перевод можно делать на основании таблицы:

2 -> 16 : собираем с конца числа четверки ( 16 = 2 4 ) чисел, каждая четверка - одна из цифр в 16-ричной с-ме. Пример ниже.

16 -> 2 - наоборот. Создаем четверки по таблице.

Из меньшего основания - к большему:

Просто вычисляем C = an * Mn + an-1 * Mn-1 + ... + a1 * M + a0, где М - старое основание. Вычисления, естественно, идут по в новой системе счисления.

Например: из 2 - в 10: 100101 = 1*25 + 0*24 + 0*23 + 1*22 + 0*21+1=32+4+1=37.

Вообще говоря, можно сделать много хитрых трюков - в примерах реализаций они есть :)

Много вопросов задается относительно дробей и отрицательных чисел.

Отpицательные - модуль числа не меняется при переходе к другой СС, посему: запомнить знак, пpименить стандаpтный метод - поставить знак. Дальше буду говорить уже о положительных числах

Десятичные дроби - пеpеношу запятую, запоминая, на какую степень основания умножил.

Например, перенос в троичном числе запятой с 4-го места от конца - то же, что и умножить его на 34

121201,2112 * 34 = 1212012112.

После стандаpтной пpоцедуpы с положительными числами поделить на этот множитель получившуюся дробь. Получится периобическая дробь - значит судьба Ваша такая. Помните: в 3-чной системе 1/3 = 0.1, а в десятичной - 0,(3). Неблагодарное это дело - с десятичными дробями оперировать.

Обыкновенные - пpавильность дpоби сохpаняется относительно пpеобpазований, значит то же - стандаpт по числителю и знаменателю.

Несколько примеров из Фидо.

Перевод десятичная -> двоичная:

Десятичное число D

1. Делим D на 2. Остаток - B0.

2. Частное снова делим на 2. Остаток - B1.

3. Повтоpяем, пока не полyчим 1/2=0 с остатком 1. Этот

последний остаток и есть стаpшая единица.

Пpимеp: D=154.

154/2=77, остаток=B0=0<

77/2=38, остаток=B1=1

38/2=19, остаток=B2=0

19/2=9, остаток=B3=1

9/2=4, остаток=B4=1

4/2=2, остаток=B5=0

2/2=1, остаток=B6=0

1/2=0, остаток=B7=1.

Итак, 154=10011010.

Перевод 2-ная -> 16-ная.

Пеpевод из двоичной системы исчисления в 16-тиричную осуществляется по таблице для каждых 4-х двоичных единиц

0000=0 0001=1 0010=2 0011=3

0100=4 0101=5 0110=6 0111=7

1000=8 1001=9 1010=A 1011=B

1100=C 1101=D 1110=E 1111=F

Например:

число 111010110 = 0001'1101'0110 = 1D6

Билет№10

Формы представления чисел в ЭВМ

Машинным изображением числа называют его представление в разрядной сетке ЭВМ. В вычислительных машинах применяются две формы представления чисел:

естественная форма или форма с фиксированной запятой (точкой);

нормальная форма или форма с плавающей запятой (точкой);

Пример:

(естественная форма) 452,34 = 452340*10-3 = 0,0045234*105 = 0,45234*103(нормальная форма)

Всякое десятичное число, прежде чем оно попадает в память компьютера, преобразуется по схеме:

X10 → X2 = M1 × [102]r

После этого осуществляется ещё одна важная процедура:

мантисса с её знаком заменяется кодом мантиссы с её знаком;

порядок числа с его знаком заменяется кодом порядка с его знаком.

Указанные коды двоичных чисел - это образы чисел, которые и воспринимают вычислительные устройства. Каждому двоичному числу можно поставить в соответствие несколько видов кодов.

Существуют следующие коды двоичных чисел:

Прямой код;

Обратный код;

Дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией сложения.

В форме с фиксированной запятой в разрядной сетке выделяется строго определенное число разрядов для целой и для дробной частей числа. Левый (старший) разряд хранит признак знака (0 – "+", 1 – "-") и для записи числа не используется.

Сама запятая никак не изображается, но ее место строго фиксировано и учитывается при выполнении всех операций с числами. Независимо от положения запятой в машину можно вводить любые числа, т.к.

A = [A] · KА,

где А – произвольное число, [A] – машинное изображение числа в разрядной сетке, KА - масштабный коэффициент.

Естественная форма числа в неявном, условном виде реализуется формулой:

т.е. число записывается только с помощью набора значащих цифр xj без явного указания их весов и знаков сложения между ними. Отсчет ведется от точки, которая обычно фиксируется между целой и дробной частями числа.

С фиксированной запятой числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной(например, 32,54; 0,0036; –108,2). Форма представления чисел с фиксированной запятой упрощает аппаратную реализацию ЭВМ, уменьшает время выполнения машинных операций, однако при решении задач на машине необходимо постоянно следить за тем, чтобы все исходные данные, промежуточные и окончательные результаты находились в допустимом диапазоне представления. Если этого не соблюдать, то возможно переполнение разрядной сетки, и результат вычислений будет неверным. От этих недостатков в значительной степени свободны ЭВМ, использующие форму представления чисел с плавающей точкой, или нормальную форму. В современных компьютерах форма представления чисел с фиксированной запятой используется только для целых чисел.

Нормальная форма

С плавающей запятой (ПЛЗ) числа изображаются в виде:

X = ± M×P ±r,

где M - мантисса числа (правильная дробь в пределах 0,1 ≤ M < 1), r - порядок числа (целое), P - основание системы счисления. Например, приведенные выше числа с фиксированной запятой можно преобразовать в числа с плавающей запятой так: 0,3254×102, 0,36×10-2, –0,1082×103.

Нормализованная экспоненциальная запись числа - это запись вида a= m*Pq, где q - целое число (положительное, отрицательное или ноль), а m - P-ичная дробь, у которой целая часть состоит из одной цифры. При этом m - мантиссa числа, q - порядк числа.

Tо есть нормальная форма реализуется формулой:

Нормальная форма представления имеет огромный диапазон чисел и является основной в современных ЭВМ.

При представлении чисел с плавающей запятой часть разрядов ячейки отводится для записи порядка числа, остальные разряды - для записи мантиссы. По одному разряду в каждой группе отводится для изображения знака порядка и знака мантиссы. Для того, чтобы не хранить знак порядка, используется так называемый смещённый порядок, который рассчитывается по формуле 2(a-1) + ИП, где a - количество разрядов, отводимых под порядок, ИП - истинный порядок.

В конкретной ЭВМ диапазон представления чисел с плавающей запятой зависит от основания системы и числа разрядов для представления порядка. При этом у одинаковых по длине форматов чисел с плавающей запятой с увеличением основания системы счисления существенно расширяется диапазон представляемых чисел. Точность вычислений при использовании формата с плавающей запятой определяется числом разрядов мантиссы. Она увеличивается с увеличением числа разрядов.

Алгоритм представления числа с плавающей запятой:

перевести число из p-ичной системы счисления в двоичную;

представить двоичное число в нормализованной экспоненциальной форме;

рассчитать смещённый порядок числа;

разместить знак, порядок и мантиссу в соответствующие разряды сетки.

При представлении информации в виде десятичных многоразрядных чисел каждая десятичная цифра заменяется двоично-десятичным кодом. Для ускорения обмена информацией, экономии памяти и удобства операций над десятичными числами предусматриваются специальные форматы их представления: зонный (распакованный) и упакованный. Зонный формат используется в операциях ввода-операций. Для этого в ЭВМ имеются специальные команды упаковки и распаковки десятичных чисел.

Прямой код

Представление числа в привычной форме "знак"-"величина", при которой старший разряд ячейки отводится под знак, а остальные - под запись числа в двоичной системе, называется прямым кодом двоичного числа. Например, прямой код двоичных чисел 1001 и -1001 для 8-разрядной ячейки равен 00001001 и 10001001 соответственно.

Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Вообще, положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде.

Например,

Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода, для их представления используется так называемый дополнительный код.

Прямой код двоичного числа(а это либо мантисса, либо порядок) образуется по такому алгоритму:

Определить данное двоичное число - оно либо целое (порядок), либо правильная дробь (мантисса).

Если это дробь, то цифры после запятой можно рассматривать как целое число.

Если это целое и положительное двоичное число, то вместе с добавлением 0 в старший разряд число превращается в код. Для отрицательного двоичного числа перед ним ставится единица.

Например,

Обратный код

Обратный код положительного двоичного числа совпадает с прямым кодом.Для отрицательного числа все цифры числа заменяются на противоположные (1 на 0, 0 на 1), а в знаковый разряд заносится единица.

Например,

Дополнительный код

Дополнительный код положительного числа равен прямому коду этого числа. Дополнительный код отрицательного числа m равен 2k - |m|, где k - количество разрядов в ячейке.Также дополнительный код отрицательного числа образуется путём прибавления 1 к обратному коду.

При представлении целых чисел со знаком старший (левый) разряд отводится под знак числа, и под собственно число остаётся на один разряд меньше.

Алгоритм получения дополнительного кода отрицательного числа:

модуль отрицательного числа представить прямым кодом в k двоичных разрядах;

значение всех бит инвертировать:все нули заменить на единицы, а единицы на нули(таким образом, #получается k-разрядный обратный код исходного числа);

к полученному обратному коду прибавить единицу.

Дополнительный код используется для упрощения выполнения арифметических операций. Если бы вычислительная машина работала с прямыми кодами положительных и отрицательных чисел, то при выполнении арифметических операций следовало бы выполнять ряд дополнительных действий. Например, при сложении нужно было бы проверять знаки обоих операндов и определять знак результата. Если знаки одинаковые, то вычисляется сумма операндов и ей присваивается тот же знак. Если знаки разные, то из большего по абсолютной величине числа вычитается меньшее и результату присваивается знак большего числа. То есть при таком представлении чисел (в виде только прямого кода) операция сложения реализуется через достаточно сложный алгоритм. Если же отрицательные числа представлять в виде дополнительного кода, то операция сложения, в том числе и разного знака, сводится к из поразрядному сложению.

Для компьютерного представления целых чисел обычно используется один, два или четыре байта, то есть ячейка памяти будет состоять из восьми, шестнадцати или тридцати двух разрядов соответственно.

Билет 11

1. Понятие об алгебре высказываний.

Логика -  это наука о формах и способах мышления.

Основные формы мышления: понятие, высказывание и умозаключение.

Понятие - это форма мышления, фиксирующая основные, существенные признаки объекта.

Высказывание

Высказывание - это форма мышления, в которой что-либо утверждается или отрицается о свойствах  реальных предметов и отношениях между ними. Высказывание может быть либо истинно, либо ложно.Свое понимание окружающего мира человек формулирует в форме высказываний (суждений, утверждений).Высказывание строится на основе понятий и по форме является повествовательным предложением.Н-р: «Два умножить на два равно четырем» - на естественном языке.2 * 2 = 4 - на формальном, математическом языке.Высказывание может быть истинным или ложным:Истинным будет высказывание, в котором связь понятий правильно отражает свойства и отношения реальных вещей.Н-р: Процессор является устройством обработки информации.Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности.Н-р: «Процессор является устройством печати»Истинность высказывания - понятие относительное.Н-р: Сегодня высказывание «На моем ПК установлен самый современный процессор Pentium 4» истинно, но пройдет некоторое время, появится более мощный процессор, и данное высказывание станет ложным.Все рассмотренные выше примеры - это простые высказывания.На основании простых высказываний могут быть построены составные высказывания.Н-р: «Процессор является устройством обработки информации и принтер является устройством печати».Если истинность или ложность простых высказываний устанавливается на основании здравого смысла, то составных высказываний вычисляется с помощью алгебры высказываний.

Умозаключение - это форма мышления, с помощью которой из одного или нескольких суждений (посылок) может быть получено новое суждение (заключение).

 

2. Основные логические операции

Алгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность составных высказываний, не вникая в их содержание.В алгебре высказываний суждениям (простым высказываниям) ставятся в соответствие логические переменные, обозначаемые прописными буквами латинского алфавита.Рассмотрим два простых высказывания:A  = «Два умножить на два равно четырем».B = «Два умножить на два равно пяти».У нас первое высказывание истинно (А=1), а второе ложно (В=0).В алгебре высказываний высказывания обозначаются именами логических переменных, которые могут принимать лишь два значения: «истина» (1) и «ложь» (0).Для образования новых высказываний наиболее часто используются базовые логические операции, выражаемые с помощью логических связок «и», «или», «не».Логическое умножение (конъюнкция) - это объединение двух (или нескольких) высказываний в одно с помощью союза «и» обозначается  = & либо ^ПравилоСоставное высказывание, образованное в результате операции логического умножения (конъюнкции), истинно тогда и только тогда, когда истинны все входящие в него простые высказывания.

Н-р: «2*2=5 и 3*3=10» ложно

«2*2=5 и 3*3=9» ложно

«2*2=4 и 3*3=10» ложно

«2*2=4 и 3*3=9» истинно

 

Н-р: F = A & BФункция логического умножения F  может принимать лишь два значения «истина» (1) и «ложь» (0):

Таблица истинности функции логического умножения

А

В

F=A&B

0

0

0

0

1

0

1

0

0

1

1

1

 

Логическое сложение (дизъюнкция) - объединение двух (или нескольких) высказываний с помощью союза «или» и обозначается  v либо +ПравилоСоставное высказывание, образованное в результате операции логического сложения (дизъюнкции), истинно тогда и только тогда, когда истинно хотя бы одно из входящих в него простых высказываний.

Н-р: «2*2=5 или 3*3=10» ложно

«2*2=5 или 3*3=9» истинно

«2*2=4 или 3*3=10» истинно

«2*2=4 или 3*3=9» истинноН-р: F = A + BФункция логического сложения F  может принимать также два значения «истина» (1) и «ложь» (0):

Таблица истинности функции логического сложения

А

В

F=A+B

0

0

0

0

1

1

1

0

1

1

1

1

 Логическое отрицание (инверсия) - это присоединение частицы «не» к высказыванию.Правило: Логическое отрицание (инверсия) делает истинное высказывание ложным и, наоборот, ложное - истинным.Н-р: A = «Два умножить на два равно четырем» - истинно высказывание.F= «Два умножить на два не равно четырем» - ложное высказывание. Операцию логического отрицания (инверсию) над логическим высказыванием A принято обозначать  А:Н-р: F =  A

Функция логического отрицания F  может принимать также два значения «истина» (1) и «ложь» (0):

Таблица истинности функции логического отрицания

А

F=A

0

1

1

0