Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word (12).docx
Скачиваний:
9
Добавлен:
25.09.2019
Размер:
246.7 Кб
Скачать

2) Дифференциальная и интегральная формы теоремы Гаусса для вектора индукции магнитногополя

      Итак, мы получили, что из закона Ампера (и закона Био-Савара-Лапласа) следует уравнение

.

(3.27)

     

     В силу принципа суперпозиции для индукции магнитного поля из (3.27) получаем фундаментальное соотношение для магнитногополя

     

.

(3.28)

 Таким образом, теорема Гаусса для векторного поля магнитной индукции в дифференциальной форме - соотношение (3.28) - является непосредственным следствием закона Био-Савара-Лапласа. Ее интегральный аналог имеет вид:

     

3) Отсутствие в природе магн.зарядов приводит к тому, что линии магн. индукции не могут прерываться в образце, и у намагниченного образца (тела) наряду с М. п. одной полярности всегда должен существовать эквивалентный М. п. другой полярности.

4) Теорема Ампера о циркуляции магнитного поля, сводящаяся к формуле

6.При перемещении провода с током в магнитном поле совершается механическая  работа равная произведению силы тока на магнитный поток, пересеченный проводом.

Работа считается положительной, если она производится силами поля и отрицательной, если она производится против сил поля.

 

Контур с током в магнитном поле

 

Предположим, что контур перемещается слева на право, тогда работа, совершенная силами “F2” и “F4” будут равны.

Т.к. контур перемещается слева на право, то “F3 > F1”;

F = F3 – F1

Ф2 = Ф1 + ∆Ф;

Ф1 – в начале перемещения;

Ф2 – в конце перемещения

Сторона “аб” совершает отрицательную работу “Aаб = -I·Ф”; “бв” и “аг” не совершают работы, т.к. силы “F2” и “F4” направлены под углом 90º к перемещению.

Если контур перемещается под действием сил поля, то изменение потока “∆Ф” будет всегда положительным.

Ф2 > Ф1; ∆Ф > 0

Всякий контур с током находящийся в магнитном поле, под действием электромагнитных сил, занимает всегда такое положение при котором “Ф” проницаемости контура будет максимальным и положительным.

7. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

2) классические опыты Фарадея, с помощью которых было обнаружено явление электромагнитной индукции. Опыт I (рис. 179, а). Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.

Опыт П. Концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблю­дается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга (рис. 179, б). Направления отклонений стрелки гальванометра также противоположны при включении или выключении тока, его увеличе­нии или уменьшении, сближении или удалении катушек.

3) Зако́н электромагни́тной инду́кции Фараде́я- Для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур. Закон Фарадея

В любой точке петли магнитный поток через неё равен:

4) Индукцио́нный ток — электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур. Величина и направление индукционного тока определяютсязаконом электромагнитной индукции и правилом Ленца.

5) Правило Ленца определяет направление индукционного тока и гласит:

Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

6) Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы.