
- •Основные понятия в измерениях и метрологии.
- •Место иит в процедурах познания и принятия решений.
- •Виды средств измерений.
- •Разновидности измерительных преобразователей.
- •Типовая структурная схема измерительных информационных систем.
- •Погрешности, вносимые средствами вычислительной техники.
- •Содержание и основные этапы измерительных информационных технологий, прямые и косвенные измерения.
- •Метрологическая структурная схема прямых измерений (средство измерений - линейное), составляющие погрешности результатов измерений.
- •Классификация погрешностей результатов измерений.
- •Примеры погрешностей применения.
- •Взаимодействие датчиков с объектами измерений, измерение температуры.
- •Аналоговые измерительные приборы, метрологическая структурная схема измерений, метрологические характеристики.
- •Приборы магнитоэлектрической системы. Амперметры, вольтметры. Принцип действия, назначение, обозначения на шкале, предельные возможности.
- •Приборы магнитоэлектрической системы с преобразователями, обозначения на шкале, предельные возможности.
- •Магнитоэлектрические омметры, кулонометры, веберметры.
- •Приборы электродинамической системы, принцип действия, обозначения на шкале, вращающий момент. Амперметры, вольтметры, ваттметры, схемы включения, предельные возможности.
- •Приборы ферродинамической системы, принцип действия, обозначения на шкале, вращающий момент. Амперметры, вольтметры, ваттметры, схемы включения, предельные возможности.
- •Приборы электромагнитной системы, принцип действия, обозначения на шкале, вращающий момент, влияние внешнего магнитного поля, исключение этого влияния, предельные возможности.
- •Приборы электростатической системы, принцип действия, обозначения на шкале, вращающий момент, предельные возможности.
- •Средства расширения пределов измерения параметров постоянного и переменного тока и напряжения.
- •Особенности применения измерительных трансформаторов тока.
- •Измерение линейных токов и напряжений в трехфазных цепях двумя приборами.
- •Измерения активной мощности и энергии одним, двумя и тремя приборами в трехфазных цепях.
- •Измерение реактивной мощности и энергии в трехфазных цепях.
- •Равновесные мосты постоянного тока, условия равновесия, причины возникновения погрешностей.
- •Особенности измерения малых сопротивлений, двойные мосты, нормируемые характеристики.
- •Применение мостов в неравновесном режиме. Причины погрешностей, нормируемые характеристики.
- •Мосты переменного тока, уравнение равновесия.
- •Мосты для измерения емкости конденсаторов.
- •Мосты для измерения индуктивности катушек.
- •Цифроаналоговые преобразователи (цап), назначение, принцип действия, вид характеристики преобразования, нормируемые метрологические характеристики.
- •Аналого-цифровые преобразователи (ацп), назначение, вид характеристики преобразования, ацп поразрядного уравновешивания, предельные возможности, обеспечение связи с компьютером.
- •Ацп “частота - код”, принцип действия, метрологические характеристики, обеспечение связи с компьютером.
- •Ацп “интервал времени - код”, принцип действия, применение для измерения частоты, метрологические характеристики, обеспечение связи с компьютером.
- •Интегрирующие ацп, принцип действия, особенности метрологических характеристик, обеспечение связи с компьютером.
- •Цифровые измерительные приборы, общая схема, цифровые мультиметры.
- •Помехи, виды помех, причины их возникновения, средства подавления продольных и поперечных помех.
- •Методы и средства измерения температуры, термопары, схемы включения, погрешности измерения температуры и их причины.
- •Методы и средства измерения температуры, металлические термопреобразователи сопротивления, схемы включения. Погрешности измерений.
- •Полупроводниковые термопреобразователи сопротивления, схемы включения. Погрешности измерений.
- •Радиационные и оптические пирометры.
- •Термоанемометры
- •Тензорезистивные датчики деформаций, принцип действия, схемы включения, источники погрешности, методы снижения, особенности поверки (калибровки). Фольговые, полупроводниковые тензорезисторы.
- •Примеры применения тензорезистивных датчиков для измерения силы, давления, ускорения, расхода жидкостей и газов.
- •Пьезоэлектрические датчики, принцип действия, материалы, свойства, схема включения. Назначение и устройство пьезодатчиков. Применение для измерений силы, ускорения и давления.
- •Гальваномагнитные датчики Холла, принцип действия, материалы.
- •Источники погрешности, меры по их уменьшению.
- •Емкостные датчики, применение для измерения деформаций, перемещений, силы, ускорения, давления, уровня, толщины. Схемы включения, источники погрешности.
- •Индуктивные, магнитострикционные датчики, дифференциальные и трансформаторные датчики, принцип действия, недостатки и преимущества.
- •Трансформаторные датчики, принцип действия, применения, недостатки и преимущества.
- •Потенциометрические (реостатные) датчики, принцип действия, применения.
- •Методы и средства измерения скорости вращения.
Радиационные и оптические пирометры.
К пирометрическим методам измерения температуры относятся пирометры полного излучения (радиационные пирометры), пирометры частичного излучения (оптические пирометры).
Принцип действия радиационных пирометров
основан на том, что по закону
Стефана-Больцмана интегральная мощность
излучения абсолютно черного тела (АЧТ)
зависит от температуры:
.
Пирометр, отградуированный по излучению
АЧТ, покажет в реальности радиационную
температуру
,
где
- коэффициент теплового излучения.
Рассмотрим схему радиационного пирометра.
Пределы измерения такого пирометра (400 3000)С. Излучение объекта воспринимается пирометром, фокусируется и попадает на термопару, находящуюся в фокусе линзы. Возникающая термоЭДС пропорциональна температуре, при которой находится термопара. Эта термоЭДС измеряется любым милливольтметром. Задачей оператора является наведение объектива пирометра на объект.
В яркостных пирометрах используется зависимость мощности излучения от температуры в ограниченном диапазоне длин волн излучения.
Рассмотрим принцип действия яркостного пирометра:
В фокусе линзы находится образцовая
нить, которая нагревается от источника
тока, проходящего через регулировочное
сопротивление
.
Оператор регулирует этим сопротивлением
ток до тех пор, пока нить не окажется
неразличимой на фоне изображения
излучающего тела. Этот ток измеряется
и по его величине судят о температуре
объекта с учетом его материала и качества
поверхности. Пределы измерения таких
пирометров от 300С
до 6000С.
Недостатком всех бесконтактных пирометров является сильная зависимость результатов измерений от коэффициента теплового излучения объекта, значение которого известно с ограниченной точностью. Достоинство бесконтактных пирометров - отсутствие непосредственного взаимодействия с объектом, вследствие чего тепловое поле объекта при измерении температуры не искажается.
Термоанемометры
Термоанемометры служат для измерения
скорости и объемного расхода негорючих
газов и жидкостей. Метод основан на
сносе тепла от нагретого предмета
(терморезистора) движущимся потоком.
Уравнение теплового баланса терморезистора,
находящегося в движущейся среде, имеет
вид
,
где I - сила тока через
терморезистор, R - его
сопротивление, S -
площадь поверхности терморезистора,
и
- температура терморезистора и температура
среды соответственно,
- коэффициент теплоотдачи, зависящий
от формы терморезистора, от вязкости,
скорости и теплопроводности среды.
Терморезистор устанавливается в держатель и включается в мост. Терморезистор нагревается проходящим через него током, а мост при этом уравновешивается при неподвижной среде. При движении среды терморезистор охлаждается, в измерительной диагонали моста появляется напряжение. Для коррекции зависимости сопротивления терморезистора от температуры движущейся среды из потока отделяют некоторую неподвижную его часть и помещают туда аналогичный терморезистор, включая его в противоположное плечо моста.
Диапазон измеряемых скоростей от 0.01 м/с до 500 м/с. Частотный диапазон термоанемометров от 0 Гц до 500 Гц. Основной причиной погрешности термоанемометров является зависимость сопротивления от теплофизических параметров среды.
39