Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word (11).docx
Скачиваний:
9
Добавлен:
25.09.2019
Размер:
86.83 Кб
Скачать

Способы наблюдения интерференции на примере световых волн.

Получить картину интерференции световых волн достаточно трудно. Причина этого в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства. Равенства длин волн достичь нетрудно, используя светофильтры. Но осуществить постоянную разность фаз невозможно, из-за того, что атомы разных источников излучают свет независимо друг от друга.

Тем не менее интерференцию света удается наблюдать. Например, радужный перелив цветов на мыльном пузыре или на тонкой пленке керосина или нефти на воде. Английский ученый Т.Юнг первым пришел к гениальной мысли, что цвет объясняется сложением волн, одна из которых отражается от наружней поверхности, а другая  от внутренней. При этом происходит интерференция световых волн. Результат интерфе­ренции зависит от угла падения света на пленку, ее толщины и длины волны.

Зеркала Френеля. Френель предложил в качестве двух когерентных источников воспользоваться двумя изображениями одного и того же действительного источника света в двух плоских зеркалах.  Схема опыта Френеля представлена на рисунке,

где A1O и А2O − два плоских зеркала, расположенных под углом φ; S − источник света, находящийся на расстоянии r от места соприкосновения зеркал в точке О. Для построения изображений источника S в обоих зеркалах воспользуемся тем, что мнимое изображение, даваемое плоским зеркалом, лежит за зеркалом на таком же расстоянии, на каком объект лежит перед зеркалом. Проведем из точки О окружность с радиусом r = OS и опустим из точки S перпендикуляр на продолжение прямой ОА1; точка пересечения продолжения этого перпендикуляра с окружностью В1 даст изображение источника S в первом зеркале ОА1. Так же построим изображение В2 даваемое во втором зеркале ОA2. С другой стороны, изображение B2 лежит в той точке, куда переместилось бы изображение В1 при повороте первого зеркала ОА1 на угол φ. Поэтому <B1OB2 = 2φ, и линейное расстояние d между В1 и В2 приближенно равно 2φr: d = 2φr. (1) Свет от обоих изображений В1 и В2 падает на экран DD/, отстоящий от зеркал на расстоянии Lo. Заслонка Е мешает попадать на экран DD/ прямому свету от источника S. Так как оба изображения B1 и В2 воспроизводят колебания одного и того же действительного источника, то они когерентны, и на экране DD/ наблюдаются интерференционные полосы. Расстояние между полосами Δl равно Δl = λL/d, где L − расстояние от источников до места наблюдения полос. Подставляя сюда вместо d его значение по (1) и замечая, что приближенно L = Lo + r, получим Δl = (Lo + r)λ/(2φr), или отсюда λ = 2φr•Δl/(Lo + r). Так как в последней формуле все величины, стоящие в правой части, доступны измерению, то из нее видно, что опыт с зеркалами Френеля позволяет измерить длину световых волн λ. Зеркала в опыте Френеля приходится располагать под весьма малым углом φ друг к другу, так как иначе полосы получаются слишком узкими. Источник света берется в виде узкой щели, параллельной ребру О, образованному зеркалами. При этом интерференционные максимумы имеют вид прямых параллельных полос. При наблюдении в белом свете центральная полоса получается белая (k = 0, усиливаются лучи всех длин волн λ), остальные − окрашенные.

Бипризма Френеля. Этот опыт представляет собою простой вариант с бизеркалами Френеля. Свет от источника S преломляется в двух призмах с малыми преломляющими углами A и A/ (рисунок), сложенных основаниями. Призмы отклоняют лучи в противоположных направлениях и, таким образом, возникают два мнимых когерентных источника света S/ и S//. Лучи от этих источников, перекрываясь в области D, дают интерференционные полосы.

ОПЫТ ЮНГА!

Ученый разработал простой по аппаратуре, но отнюдь не простой в смысле трактовки знаменитый эксперимент (опыт Юнга), связывающий явление интерференции с дифракцией.

   В 1803 г. Т. Юнг реализовал первый вариант этого опыта. «Я сделал маленькую дырочку в оконной ставне и покрыл ее куском толстой бумаги, которую я проколол тонкой иглой. На пути солнечного луча я поместил бумажную полоску шириной около одной тридцатой дюйма и наблюдал ее тень или на стене или на перемещаемом экране. Рядом с цветными полосами на каждом краю тени сама тень была разделена одинаковыми параллельными полосами малых размеров, число полос зависело от расстояния, на котором наблюдалась тень, центр тени оставался всегда белым. Эти полосы были результатом соединения частей светового пучка, прошедших по обе стороны полоски и инфлектировавших, скорее дифрагировавших, в область тени». Т. Юнг доказал правильность такого объяснения, устраняя одну из двух частей пучка. Интерференционные полосы при этом исчезали, хотя дифракционные полосы оставались.

   Затем ученый реализовал свой классиче­ский опыт с тремя щелями  «Для получения эффектов наложения двух порций света необходимо, чтобы они исходили из одного источника и приходили в одну и ту же точку по разным путям, но по близким между собой направлениям. Для отклонения одного или обеих частей пучка можно использовать дифракцию, отражение, преломление или комбинацию этих эффектов, но самый простой способ, если пучок однородного света [от первой щели] (один цвет или длина волны) падает на экран, в котором сделаны два очень маленьких отверстия или щели, которые можно рассматривать как центры расхождения, от которых свет благодаря дифракции рассеивается во всех направлениях».

Далее Т. Юнг дал ясную теорию интерференционной картины. Сейчас во всех курсах физики и в большинстве курсов квантовой механики фигурирует опыт Юн­га как наиболее простой по схеме и наиболее убедительный при рассмотрении интерференции волн.