- •1. Физико-химические закономерности идеально-газовых реакций. Условия направленности и равновесия.
- •2. Как вычисляют разность стандартных химических потенциалов
- •3. Основные термодинамические закономерности идеально газовых реакций
- •4. Видоизмененные выражения Кр
- •5. Определение Кр расчетным методом Вычисление состава равновесной смеси
- •6. Влияние абсолютного значения и знака ∆g0 на константу равновесия. Границы изменения Кр
2. Как вычисляют разность стандартных химических потенциалов
Отметим,
что по определению
– это химический потенциал одного моля
чистого i–го
идеального газа при данной температуре
Т и стандартном давлении Р0
= 1 атм. Но для чистого вещества μ = g;
μ0
= g0
и для
имеем
Здесь,
например,
– это энергия Гиббса
чистого идеального газа С, количество
молей которого равно с.
Тогда
или
Величина
называется изменением стандартной
энергии Гиббса или сокращенно стандартной
энергией Гиббса (при температуре Т).
Из
физико-химического смысла (8) – (9) следует,
что
соответствует
изменению энергии Гиббса в реакции со
стехиометрическим уравнением
аА + bB = cC + dD,
н
аА
а
T, P0
bB
b
T, P0
cC
c
T, P0
dD
d
T, P0
о каждый из реагентов и продуктов является чистым веществом, находящимся в изолированном от других веществ состоянии при стандартном давлении Р0=1 атм и температуре Т.
+
= +
Отметим
также, что в «реакции» (11) а молей А, b
молей B
полностью «превращаются» в с молей С и
d
молей D,
при изменении ξ от нуля до единицы, ∆ξ=1.
Аналогичная «реакция» имеется в виду
при вычислении
реакции по энтальпиям образования и
энтальпиям сгорания.
Непосредственно
определить ∆G0
по
уравнению (11) невозможно, поскольку
неизвестны мольные абсолютные значения
энергий Гиббса
.
Но
можно
вычислить расчетным путем, используя
энергии образования (по Гиббсу) чистых
соединений, обозначаемых
.
Энергия
образования
– величина аналогичная энтальпии
образования
.
Гиббсова энергия образования это изменение энергии Гиббса в реакции образования данного соединения из простых веществ при стандартном давлении Р0=1 атм, при этом сами вещества и образующееся соединение находятся в стандартных состояниях. Например,
S (тв, ромб.) + О2 (идеал. газ) = SO2 (идеал. газ) (12)
T,
P0
=
1 атм
Данную реакцию можно осуществить экспериментально. Из приведенного примера следует, что реакция образования – это реакция, в которой вещества – реагенты полностью превращаются в соединение – продукт. Стандартность реакции (12) заключается в том, что задано определенное стандартное состояние для серы: сера твердая в ромбической модификации. Далее: О2, SO2 – идеальные газы, реакция проводится при температуре Т, и общем давлении P0 = 1 атм. При невозможности осуществить реакцию образования экспериментально, находят расчетными методами, используя закон Гесса.
Изменение стандартной энергии Гиббса в произвольной реакции (1) равно разности между суммой мольных энергий образования продуктов, умноженных на стехиометрические коэффициенты при соответствующих веществах и аналогичной суммой мольных энергий образования реагентов
Если в реакции принимают участие простые вещества, то при вычисления , энергия образования простых веществ принимается равной нулю при всех температурах Т.
SО2 (г) + 1/2О2 (г) = SO3 (г) (13)
При
этом
.
Такое
правило следует из закона Гесса, который
справедлив для любых функций состояния,
в том числе и для
.
Покажем это на примере реакции (13), для
которой закон Гесса в виде совокупности
стадий выражается следующим образом:
(1)
S
(тв, ромб.) + 3/2О2
(г) = SO3
(г),
(2)
SO2
(г) = S
(тв, ромб.) + О2
(г).
Складывая
почленно реакции (1) и (2) получаем суммарную
реакцию (13) и соответствующее правило
вычисления
,
выражаемое соотношением (14). При вычислении
в виде разности энергий образования
некоторых соединений
веществ
выпадают из итоговой величины и для них
можно принять любое произвольное
значение. По международным правилам
принимается значение, равное нулю при
любых температурах.
По определению
G0 = H0 – TS0
После дифференцирования
dG0 = dH0 – TdS0 – S0dT
При Т = const
и
В
соответствие с уравнением (15) изменение
стандартной энергии Гиббса можно
вычислять по данным о стандартной
энтальпии реакции
и стандартной энтропии реакции
.
Пример.
Определить ∆G0 при 218,15 реакции (13) а) по Гиббсовым энергиям образования; б) по данным ∆H0 и ∆S0.
Решение.
Из справочных данных находим
-
,
кДж/моль∆H0, кДж/моль
S0, Дж/моль·К
О3 (г)
-370,45
- 395,2
256,65
SO2 (г)
-300,19
-296,9
248,11
O2 (г)
0
0
205,03
∆G0 = -370,45 + 300,19 = - 70,26 кДж
∆H0 = -395,2 + 296,9 = -98,3 кДж
∆S0 = 256,65 – (248,11 + 1/2· 205,03) = -93,98 Дж·К-1
T∆S0 = -93,98·248,15 = -28,02 кДж
∆G0 = ∆H0 – T∆S0 = -70,3 кДж
Комментарий. Поскольку известны абсолютные значения энтропии чистых веществ, ∆S0 вычисляют способом, который следует из физико-химического смысла стандартной реакции, как реакции между чистыми веществами.
По
уравнению (15) вычисляют
,
которые приводятся в виде справочных
данных, используя
,
определенные экспериментально или
расчетным методом, и
,
вычисляемые через абсолютные значения
чистых веществ
.
Пример.
Рассчитать
при 298,15К, если
=
-395,2 кДж/моль.
Решение.
Реакция образования SO3
S (тв, ромб.) + 3/2О2 (г) = SO3 (г), = ?
где
– изменение энтропии в реакции
образования, которое находят по уравнению
Из справочных данных имеем
256,68
– (31,80+3/2·205,03) = – 82,67 Дж/моль·К
– 395,2 + 298,15·82,67 = – 370,45 кДж/моль
