
- •34. Приницп относительности Галилея
- •35. Сложение гармонических колебаний
- •Метод векторных диаграмм
- •36. Свободные гармонические колебания
- •37. Потенциальные силы. Потенциальная энергия. Эквипотенциальные поверхности. Связь силы и потенциальной энергии.
- •38. Пружинные маятники(горизонтальный и вертикальный)
- •39. Вес тела. Невесомость
- •40. Математический и физический маятники.
- •41. Движение в поле силы всемирного тяготения. Космическая скорость.
- •42. Затухающие колебания. Их характеристики
- •43. Векторы. Действие над векторами. Скалярное и векторное произведение.
- •44. Вынужденные колебания. Резонанс
39. Вес тела. Невесомость
илу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).
Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае
Р=Fт=mg.
Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.
Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.
Fт + Fуп=mа. (2.32)
Согласно приведенному выше определению понятия "вес", можно написать, что Р=-Fyп. Из (2.32) с учетом того, что Fт=mg, следует, что mg-mа=-Fyп. Следовательно, Р=m(g-а).
Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю
P=m(g-a) (2.33)
Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то
Р = m[g - (- а)] = m(g+а).
Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.
При свободном падении a=g. Из (2.33) следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.
40. Математический и физический маятники.
Математический маятник.
Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести.
Таким
маятником можно считать тяжелый шар
массой m, подвешенный на тонкой нити,
длина l которой намного больше размеров
шара. Если его отклонить на угол α
(рис.7.3.) от вертикальной линии, то под
влиянием силы F – одной из составляющих
веса Р он будет совершать колебания.
Другая составляющая
,
направленная вдоль нити, не учитывается,
т.к. уравновешивается силой натяжения
нити. При малых углах смещения
и,
тогда координату х можно отсчитывать
по горизонтальному направлению. Из
рис.7.3 видно, что составляющая веса,
перпендикулярная нити, равна
Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α
Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения
Момент
силы относительно точки О:
,
и момент инерции:
M
= FL
.
Момент инерции J
в данном случае
Угловое ускорение:
С
учетом этих величин имеем:
или
|
(7.8) |
Его
решение
,
где
|
(7.9) |
Как видим, период колебаний математического маятника зависит от его длины и ускорения силы тяжести и не зависит от амплитуды колебаний.
Физический маятник.
Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной.
При небольших углах отклонения α (рис. 7.4) физический маятник так же совершает гармонические колебания. Будем считать, что вес физического маятника приложен к его центру тяжести в точке С. Силой, которая возвращает маятник в положение равновесия, в данном случае будет составляющая силы тяжести – сила F.
Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α
Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения
.
Момент силы: определить в явном виде
нельзя. С учетом всех величин, входящих
в исходное дифференциальное уравнение
колебаний физического маятника имеет
вид:
|
(7.10) |
|
(7.11) |
Решение
этого уравнения
Определим
длину l математического маятника, при
которой период его колебаний равен
периоду колебаний физического маятника,
т.е.
или
.
Из
этого соотношения определяем
Данная формула определяет приведенную длину физического маятника, т.е. длину такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.