Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vm_4_semestr.docx
Скачиваний:
5
Добавлен:
25.09.2019
Размер:
459.95 Кб
Скачать

4) Сложение и умножение вероятностей

Событие А называется частным случаем события В, если при наступлении А наступает и В. То, что А является частным случаем В, записываем  .

События А и В называются равными, если каждое из них является частным случаем другого. Равенство событий А и В записываем А = В.

Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Теорема о сложении вероятностей. Вероятность появления одного из двухнесовместных событий равна сумме вероятностей этих событий.

Заметим, что сформулированная теорема справедлива для любого числа несовместных событий:

.

Если случайные события   образуют полную группу несовместных событий, то имеет место равенство

.

Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В одновременно. Случайные события А и Bназываются совместными, если при данном испытании могут произойти оба эти события.

Теорема о сложении вероятностей 2. Вероятность суммы совместных событий вычисляется по формуле

.

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей. Вероятность произведения независимых событийА и В вычисляется по формуле:

.

Вероятность произведения зависимых событий вычисляется по формуле условной вероятности (см. следующий раздел).

5) Формула полной вероятности и формула Байеса

Если событие А может произойти только при выполнении одного из событий  , которые образуют полную группу несовместных событий, то вероятность события Авычисляется по формуле

.

Эта формула называется формулой полной вероятности.

Вновь рассмотрим полную группу несовместных событий  , вероятности появления которых  . Событие А может произойти только вместе с каким-либо из событий  , которые будем называть гипотезами. Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез  .

По теореме умножения вероятностей

,

откуда

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса). Вероятности гипотез   называются апостериорными вероятностями, тогда как   -априорными вероятностями.

6) Схема независимых испытаний Бернулли

  Проводится серия из nнезависимых испытаний, каждое из которых заканчивается либо “успехом” либо “неуспехом”, в каждом испытании (опыте) вероятность успеха p, а вероятность неуспеха q=1-p. Вероятность того, что в серии будет реализовано ровно “успехов” вычисляется по формуле

, где 0<p<1, k=0, 1, …, n .

7)  Дискретные случайные величины.     Рассмотрим случайную величину *  , возможные значения которой образуют конечную или бесконечную последовательность чисел x1, x2, ..., xn, ... . Пусть задана функцияp(x), значение которой в каждой точке x=xi (i=1,2, ...) равно вероятности того, что величина   примет значение xi

(16)

   Такая случайная величина   называется дискретной (прерывной). Функция р(х) называется законом распределения вероятностей случайной величины, или кратко, законом распределения. Эта функция определена в точках последовательности x1, x2, ..., xn, ... . Так как в каждом из испытаний случайная величина   принимает всегда какое-либо значение из области ее изменения, то Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.

Свойства

 непрерывна справа:[1]

 не убывает на всей числовой прямой.

.

.

Распределение случайной величины   однозначно определяет функцию распределения.

Верно и обратное: если функция   удовлетворяет четырём перечисленным выше свойствам, то существует вероятностное пространство и определённая на нём случайная величина, такая что   является её функцией распределения.

По определению непрерывности справа, функция   имеет правый предел   в любой точке  , и он совпадает со значением функции   в этой точке.

В силу неубывания, функция   также имеет и левый предел   в любой точке  , который может не совпадать со значением функции. Таким образом, функция   либо непрерывна в точке, либо имеет в ней разрыв первого рода.

Тождества

Из свойств вероятности следует, что  , таких что  :

;

;

;

;

;

;

;

.Математи́ческое ожида́ние — среднее значение случайной величины, распределение вероятностей случайной величины, рассматривается в теории вероятностей.[1] В англоязычной литературе и в математическом сообществе Санкт-Петербурга обозначается через   (например, от англ. Expected value или нем. Erwartungswert), в русской —   (возможно, от англ. Mean value или нем. Mittelwert, а возможно от рус. Математическое ожидание). В статистике часто используют обозначение  Если   — функция распределения случайной величины, то её математическое ожидание задаётся интегралом Лебега — Стилтьеса:

Дисперсия признака σ 2 представляет собой средний квадрат отклонений вариантов от их средней величины, является общепринятой мерой вариации. В зависимости от исходных данных дисперсия вычисляется по формулам простой и взвешенной средней арифметической:

При использовании взвешенной средней для расчета дисперсии в интервальных рядах распределения в качестве вариантов значений признака используются серединные значения b (середины интервалов), не являющиеся средним значением в группе. В результате получают приближенное значение дисперсии.

Дисперсия как базовый показатель вариации обладает рядом вычислительных свойств, позволяющих упростить её расчет. К ним относятся:

• дисперсия постоянной величины равна 0;

• дисперсия не меняется, если все варианты увеличить или уменьшить на одно и то же число А;

• если все варианты умножить (разделить) на число А, то дисперсия увеличится (уменьшится) в А2  раз.

Размерность дисперсии соответствует квадрату размерности исследуемого признака, поэтому данный показатель не имеет экономической интерпретации. Для сохранения экономического смысла рассчитывается ещё один показатель вариации – среднее квадратическое отклонение.

Среднее квадратическое отклонение представляет собой среднюю квадратическую из отклонений отдельных значений признака от их средней арифметической:

Среднее квадратическое отклонение является именованной величиной, имеет размерность усредняемого признака, экономически хорошо интерпретируется. Она также используется для оценки надежности средней: чем меньше cреднее квадратическое отклонение σ , тем надежнее cреднее значение признака x , тем лучше средняя представляет исследуемую совокупность. Для распределений, близких к нормальным между средним квадратическим отклонением и средним линейным отклонением существует следующая зависимость: 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]